GPU Accelerated Automated Feature Extraction From Satellite Images

The availability of large volumes of remote sensing data insists on higher degree of automation in feature extraction, making it a need of the hour. Utilizing the aforementioned features in remote sensing is impracticable in the absence of automation. While efforts are underway to reduce human inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of distributed and parallel systems 2013-03, Vol.4 (2), p.1-15
Hauptverfasser: Tejaswi, K. Phani, Rao, D. Shanmukha, Nair, Thara, A.V.V, Prasad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 2
container_start_page 1
container_title International journal of distributed and parallel systems
container_volume 4
creator Tejaswi, K. Phani
Rao, D. Shanmukha
Nair, Thara
A.V.V, Prasad
description The availability of large volumes of remote sensing data insists on higher degree of automation in feature extraction, making it a need of the hour. Utilizing the aforementioned features in remote sensing is impracticable in the absence of automation. While efforts are underway to reduce human intervention in data processing, this attempt alone may not suffice. The huge quantum of data that needs to be processed entails accelerated processing to be enabled. GPUs, which were originally designed to provide efficient visualization, are being massively employed for computation intensive parallel processing environments. This paper discusses the aforesaid algorithm for automated feature extraction, necessity of deployment of GPUs for the same; system-level challenges and quantifies the benefits of integrating GPUs in such environment. The results demonstrate that substantial enhancement in performance margin can be achieved with the best utilization of GPU resources and an efficient parallelization strategy. Performance results in comparison with the conventional computing scenario have provided a speedup of 20x, on realization of this parallelizing strategy.
doi_str_mv 10.5121/ijdps.2013.4201
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417892253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417892253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1601-3c58a1eec437f302bcd7f8a6980555659e0d0e6fb5da66991a918cce54f85553</originalsourceid><addsrcrecordid>eNotkE1rwzAMhs3YYKXredccd0lr2bEdH7vSLyhssO5sXEcZKUnT2Q5s_35uOx0kgR7Ey0PIM9CpAAaz5lidw5RR4NMi9TsyolrJXCuh7smIMaZzroV6JJMQjjSVFFBwGJHX9ftnNncOW_Q2YpXNh9h3122FNg4es-VP9NbFpj9lK9932Ue6tm0TMdt29gvDE3mobRtw8j_HZL9a7hebfPe23i7mu9yBpJBzJ0oLiK7gquaUHVyl6tJKXVIhhBQaaUVR1gdRWSm1BquhTMFEUZcJ4GPycnt79v33gCGargkpd2tP2A_BQAGq1IwJntDZDXW-D8Fjbc6-6az_NUDNxZe5-jIXX-bii_8Blo1doQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417892253</pqid></control><display><type>article</type><title>GPU Accelerated Automated Feature Extraction From Satellite Images</title><source>EZB Electronic Journals Library</source><creator>Tejaswi, K. Phani ; Rao, D. Shanmukha ; Nair, Thara ; A.V.V, Prasad</creator><creatorcontrib>Tejaswi, K. Phani ; Rao, D. Shanmukha ; Nair, Thara ; A.V.V, Prasad</creatorcontrib><description>The availability of large volumes of remote sensing data insists on higher degree of automation in feature extraction, making it a need of the hour. Utilizing the aforementioned features in remote sensing is impracticable in the absence of automation. While efforts are underway to reduce human intervention in data processing, this attempt alone may not suffice. The huge quantum of data that needs to be processed entails accelerated processing to be enabled. GPUs, which were originally designed to provide efficient visualization, are being massively employed for computation intensive parallel processing environments. This paper discusses the aforesaid algorithm for automated feature extraction, necessity of deployment of GPUs for the same; system-level challenges and quantifies the benefits of integrating GPUs in such environment. The results demonstrate that substantial enhancement in performance margin can be achieved with the best utilization of GPU resources and an efficient parallelization strategy. Performance results in comparison with the conventional computing scenario have provided a speedup of 20x, on realization of this parallelizing strategy.</description><identifier>ISSN: 2229-3957</identifier><identifier>EISSN: 0976-9757</identifier><identifier>DOI: 10.5121/ijdps.2013.4201</identifier><language>eng</language><subject>Automated ; Automation ; Computation ; Feature extraction ; Parallel processing ; Remote sensing ; Strategy</subject><ispartof>International journal of distributed and parallel systems, 2013-03, Vol.4 (2), p.1-15</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1601-3c58a1eec437f302bcd7f8a6980555659e0d0e6fb5da66991a918cce54f85553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tejaswi, K. Phani</creatorcontrib><creatorcontrib>Rao, D. Shanmukha</creatorcontrib><creatorcontrib>Nair, Thara</creatorcontrib><creatorcontrib>A.V.V, Prasad</creatorcontrib><title>GPU Accelerated Automated Feature Extraction From Satellite Images</title><title>International journal of distributed and parallel systems</title><description>The availability of large volumes of remote sensing data insists on higher degree of automation in feature extraction, making it a need of the hour. Utilizing the aforementioned features in remote sensing is impracticable in the absence of automation. While efforts are underway to reduce human intervention in data processing, this attempt alone may not suffice. The huge quantum of data that needs to be processed entails accelerated processing to be enabled. GPUs, which were originally designed to provide efficient visualization, are being massively employed for computation intensive parallel processing environments. This paper discusses the aforesaid algorithm for automated feature extraction, necessity of deployment of GPUs for the same; system-level challenges and quantifies the benefits of integrating GPUs in such environment. The results demonstrate that substantial enhancement in performance margin can be achieved with the best utilization of GPU resources and an efficient parallelization strategy. Performance results in comparison with the conventional computing scenario have provided a speedup of 20x, on realization of this parallelizing strategy.</description><subject>Automated</subject><subject>Automation</subject><subject>Computation</subject><subject>Feature extraction</subject><subject>Parallel processing</subject><subject>Remote sensing</subject><subject>Strategy</subject><issn>2229-3957</issn><issn>0976-9757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkE1rwzAMhs3YYKXredccd0lr2bEdH7vSLyhssO5sXEcZKUnT2Q5s_35uOx0kgR7Ey0PIM9CpAAaz5lidw5RR4NMi9TsyolrJXCuh7smIMaZzroV6JJMQjjSVFFBwGJHX9ftnNncOW_Q2YpXNh9h3122FNg4es-VP9NbFpj9lK9932Ue6tm0TMdt29gvDE3mobRtw8j_HZL9a7hebfPe23i7mu9yBpJBzJ0oLiK7gquaUHVyl6tJKXVIhhBQaaUVR1gdRWSm1BquhTMFEUZcJ4GPycnt79v33gCGargkpd2tP2A_BQAGq1IwJntDZDXW-D8Fjbc6-6az_NUDNxZe5-jIXX-bii_8Blo1doQ</recordid><startdate>20130331</startdate><enddate>20130331</enddate><creator>Tejaswi, K. Phani</creator><creator>Rao, D. Shanmukha</creator><creator>Nair, Thara</creator><creator>A.V.V, Prasad</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130331</creationdate><title>GPU Accelerated Automated Feature Extraction From Satellite Images</title><author>Tejaswi, K. Phani ; Rao, D. Shanmukha ; Nair, Thara ; A.V.V, Prasad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1601-3c58a1eec437f302bcd7f8a6980555659e0d0e6fb5da66991a918cce54f85553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automated</topic><topic>Automation</topic><topic>Computation</topic><topic>Feature extraction</topic><topic>Parallel processing</topic><topic>Remote sensing</topic><topic>Strategy</topic><toplevel>online_resources</toplevel><creatorcontrib>Tejaswi, K. Phani</creatorcontrib><creatorcontrib>Rao, D. Shanmukha</creatorcontrib><creatorcontrib>Nair, Thara</creatorcontrib><creatorcontrib>A.V.V, Prasad</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of distributed and parallel systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tejaswi, K. Phani</au><au>Rao, D. Shanmukha</au><au>Nair, Thara</au><au>A.V.V, Prasad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPU Accelerated Automated Feature Extraction From Satellite Images</atitle><jtitle>International journal of distributed and parallel systems</jtitle><date>2013-03-31</date><risdate>2013</risdate><volume>4</volume><issue>2</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2229-3957</issn><eissn>0976-9757</eissn><abstract>The availability of large volumes of remote sensing data insists on higher degree of automation in feature extraction, making it a need of the hour. Utilizing the aforementioned features in remote sensing is impracticable in the absence of automation. While efforts are underway to reduce human intervention in data processing, this attempt alone may not suffice. The huge quantum of data that needs to be processed entails accelerated processing to be enabled. GPUs, which were originally designed to provide efficient visualization, are being massively employed for computation intensive parallel processing environments. This paper discusses the aforesaid algorithm for automated feature extraction, necessity of deployment of GPUs for the same; system-level challenges and quantifies the benefits of integrating GPUs in such environment. The results demonstrate that substantial enhancement in performance margin can be achieved with the best utilization of GPU resources and an efficient parallelization strategy. Performance results in comparison with the conventional computing scenario have provided a speedup of 20x, on realization of this parallelizing strategy.</abstract><doi>10.5121/ijdps.2013.4201</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2229-3957
ispartof International journal of distributed and parallel systems, 2013-03, Vol.4 (2), p.1-15
issn 2229-3957
0976-9757
language eng
recordid cdi_proquest_miscellaneous_1417892253
source EZB Electronic Journals Library
subjects Automated
Automation
Computation
Feature extraction
Parallel processing
Remote sensing
Strategy
title GPU Accelerated Automated Feature Extraction From Satellite Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPU%20Accelerated%20Automated%20Feature%20Extraction%20From%20Satellite%20Images&rft.jtitle=International%20journal%20of%20distributed%20and%20parallel%20systems&rft.au=Tejaswi,%20K.%20Phani&rft.date=2013-03-31&rft.volume=4&rft.issue=2&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2229-3957&rft.eissn=0976-9757&rft_id=info:doi/10.5121/ijdps.2013.4201&rft_dat=%3Cproquest_cross%3E1417892253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417892253&rft_id=info:pmid/&rfr_iscdi=true