Temperature-dependent relaxation current on single and dual layer Pt metal nanocrystal-based Al2O3/SiO2 gate stack

We present a systematic investigation of the temperature dependent relaxation current behavior for single layer and dual layer Pt metal nanocrystal (MNC)-based Al2O3/SiO2 flash memory gate stacks. Stacks containing single layer Pt MNC exhibit a dual-slope behavior in the log-log plots of the relaxat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2012-11, Vol.112 (10)
Hauptverfasser: Chen, Y. N., Goh, K. E. J., Wu, X., Lwin, Z. Z., Singh, P. K., Mahapatra, S., Pey, K. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of applied physics
container_volume 112
creator Chen, Y. N.
Goh, K. E. J.
Wu, X.
Lwin, Z. Z.
Singh, P. K.
Mahapatra, S.
Pey, K. L.
description We present a systematic investigation of the temperature dependent relaxation current behavior for single layer and dual layer Pt metal nanocrystal (MNC)-based Al2O3/SiO2 flash memory gate stacks. Stacks containing single layer Pt MNC exhibit a dual-slope behavior in the log-log plots of the relaxation transient, whereas those with dual layer Pt MNC exhibit a single-slope behavior. We propose a physical model embodying two competing relaxation mechanisms to explain the Pt MNC induced relaxation current—thermionic emission and the quantum tunneling. Based on this model, the dual-slope behavior of single layer MNC-based gate stack can be ascribed to the dominance of thermionic emission at the initial part and quantum tunneling at the tail part. In contrast, the single slope behavior of the dual layer metal nanocrystal-based stack arises from the dominance of the quantum tunneling throughout the relaxation. In addition, we verify that stacks containing dual layer MNC show better retention property than their single layer counterparts. Our results demonstrate that relaxation current measurements offer a simple way to assess the charge retention capability for MNC-based gate stacks.
doi_str_mv 10.1063/1.4764873
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417884661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417884661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-748e627827febe944173309905d6caf2b95083feb956f3e7835d35bb774b37753</originalsourceid><addsrcrecordid>eNotUE9LwzAcDaLgnB78BjnqoVvSJE1yHEOnMJjgPJe0_XVU07QmKbhvb8Z2en95h4fQIyULSgq2pAsuC64ku0IzSpTOpBDkGs0IyWmmtNS36C6Eb0IoVUzPkN9DP4I3cfKQNTCCa8BF7MGaPxO7weF68v5kJRo6d7CAjWtwMxmLrTmCxx8R9xCTdMYNtT-GxLPKBGjwyuY7tvzsdjk-mAg4RfXPPbppjQ3wcME5-np92a_fsu1u875ebbM61zJmkisocqly2UIFmnMqGSNaE9EUtWnzSguiWMq0KFoGUjHRMFFVUvKKSSnYHD2dd0c__E4QYtl3oQZrjYNhCiVNi0rxoqCp-nyu1n4IwUNbjr7rjT-WlJSnX0taXn5l_96Tags</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417884661</pqid></control><display><type>article</type><title>Temperature-dependent relaxation current on single and dual layer Pt metal nanocrystal-based Al2O3/SiO2 gate stack</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Chen, Y. N. ; Goh, K. E. J. ; Wu, X. ; Lwin, Z. Z. ; Singh, P. K. ; Mahapatra, S. ; Pey, K. L.</creator><creatorcontrib>Chen, Y. N. ; Goh, K. E. J. ; Wu, X. ; Lwin, Z. Z. ; Singh, P. K. ; Mahapatra, S. ; Pey, K. L.</creatorcontrib><description>We present a systematic investigation of the temperature dependent relaxation current behavior for single layer and dual layer Pt metal nanocrystal (MNC)-based Al2O3/SiO2 flash memory gate stacks. Stacks containing single layer Pt MNC exhibit a dual-slope behavior in the log-log plots of the relaxation transient, whereas those with dual layer Pt MNC exhibit a single-slope behavior. We propose a physical model embodying two competing relaxation mechanisms to explain the Pt MNC induced relaxation current—thermionic emission and the quantum tunneling. Based on this model, the dual-slope behavior of single layer MNC-based gate stack can be ascribed to the dominance of thermionic emission at the initial part and quantum tunneling at the tail part. In contrast, the single slope behavior of the dual layer metal nanocrystal-based stack arises from the dominance of the quantum tunneling throughout the relaxation. In addition, we verify that stacks containing dual layer MNC show better retention property than their single layer counterparts. Our results demonstrate that relaxation current measurements offer a simple way to assess the charge retention capability for MNC-based gate stacks.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4764873</identifier><language>eng</language><subject>Aluminum oxide ; Dominance ; Gates ; Nanocrystals ; Platinum ; Silicon dioxide ; Stacks ; Tunneling</subject><ispartof>Journal of applied physics, 2012-11, Vol.112 (10)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-748e627827febe944173309905d6caf2b95083feb956f3e7835d35bb774b37753</citedby><cites>FETCH-LOGICAL-c297t-748e627827febe944173309905d6caf2b95083feb956f3e7835d35bb774b37753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Y. N.</creatorcontrib><creatorcontrib>Goh, K. E. J.</creatorcontrib><creatorcontrib>Wu, X.</creatorcontrib><creatorcontrib>Lwin, Z. Z.</creatorcontrib><creatorcontrib>Singh, P. K.</creatorcontrib><creatorcontrib>Mahapatra, S.</creatorcontrib><creatorcontrib>Pey, K. L.</creatorcontrib><title>Temperature-dependent relaxation current on single and dual layer Pt metal nanocrystal-based Al2O3/SiO2 gate stack</title><title>Journal of applied physics</title><description>We present a systematic investigation of the temperature dependent relaxation current behavior for single layer and dual layer Pt metal nanocrystal (MNC)-based Al2O3/SiO2 flash memory gate stacks. Stacks containing single layer Pt MNC exhibit a dual-slope behavior in the log-log plots of the relaxation transient, whereas those with dual layer Pt MNC exhibit a single-slope behavior. We propose a physical model embodying two competing relaxation mechanisms to explain the Pt MNC induced relaxation current—thermionic emission and the quantum tunneling. Based on this model, the dual-slope behavior of single layer MNC-based gate stack can be ascribed to the dominance of thermionic emission at the initial part and quantum tunneling at the tail part. In contrast, the single slope behavior of the dual layer metal nanocrystal-based stack arises from the dominance of the quantum tunneling throughout the relaxation. In addition, we verify that stacks containing dual layer MNC show better retention property than their single layer counterparts. Our results demonstrate that relaxation current measurements offer a simple way to assess the charge retention capability for MNC-based gate stacks.</description><subject>Aluminum oxide</subject><subject>Dominance</subject><subject>Gates</subject><subject>Nanocrystals</subject><subject>Platinum</subject><subject>Silicon dioxide</subject><subject>Stacks</subject><subject>Tunneling</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotUE9LwzAcDaLgnB78BjnqoVvSJE1yHEOnMJjgPJe0_XVU07QmKbhvb8Z2en95h4fQIyULSgq2pAsuC64ku0IzSpTOpBDkGs0IyWmmtNS36C6Eb0IoVUzPkN9DP4I3cfKQNTCCa8BF7MGaPxO7weF68v5kJRo6d7CAjWtwMxmLrTmCxx8R9xCTdMYNtT-GxLPKBGjwyuY7tvzsdjk-mAg4RfXPPbppjQ3wcME5-np92a_fsu1u875ebbM61zJmkisocqly2UIFmnMqGSNaE9EUtWnzSguiWMq0KFoGUjHRMFFVUvKKSSnYHD2dd0c__E4QYtl3oQZrjYNhCiVNi0rxoqCp-nyu1n4IwUNbjr7rjT-WlJSnX0taXn5l_96Tags</recordid><startdate>20121115</startdate><enddate>20121115</enddate><creator>Chen, Y. N.</creator><creator>Goh, K. E. J.</creator><creator>Wu, X.</creator><creator>Lwin, Z. Z.</creator><creator>Singh, P. K.</creator><creator>Mahapatra, S.</creator><creator>Pey, K. L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121115</creationdate><title>Temperature-dependent relaxation current on single and dual layer Pt metal nanocrystal-based Al2O3/SiO2 gate stack</title><author>Chen, Y. N. ; Goh, K. E. J. ; Wu, X. ; Lwin, Z. Z. ; Singh, P. K. ; Mahapatra, S. ; Pey, K. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-748e627827febe944173309905d6caf2b95083feb956f3e7835d35bb774b37753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aluminum oxide</topic><topic>Dominance</topic><topic>Gates</topic><topic>Nanocrystals</topic><topic>Platinum</topic><topic>Silicon dioxide</topic><topic>Stacks</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Y. N.</creatorcontrib><creatorcontrib>Goh, K. E. J.</creatorcontrib><creatorcontrib>Wu, X.</creatorcontrib><creatorcontrib>Lwin, Z. Z.</creatorcontrib><creatorcontrib>Singh, P. K.</creatorcontrib><creatorcontrib>Mahapatra, S.</creatorcontrib><creatorcontrib>Pey, K. L.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Y. N.</au><au>Goh, K. E. J.</au><au>Wu, X.</au><au>Lwin, Z. Z.</au><au>Singh, P. K.</au><au>Mahapatra, S.</au><au>Pey, K. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-dependent relaxation current on single and dual layer Pt metal nanocrystal-based Al2O3/SiO2 gate stack</atitle><jtitle>Journal of applied physics</jtitle><date>2012-11-15</date><risdate>2012</risdate><volume>112</volume><issue>10</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We present a systematic investigation of the temperature dependent relaxation current behavior for single layer and dual layer Pt metal nanocrystal (MNC)-based Al2O3/SiO2 flash memory gate stacks. Stacks containing single layer Pt MNC exhibit a dual-slope behavior in the log-log plots of the relaxation transient, whereas those with dual layer Pt MNC exhibit a single-slope behavior. We propose a physical model embodying two competing relaxation mechanisms to explain the Pt MNC induced relaxation current—thermionic emission and the quantum tunneling. Based on this model, the dual-slope behavior of single layer MNC-based gate stack can be ascribed to the dominance of thermionic emission at the initial part and quantum tunneling at the tail part. In contrast, the single slope behavior of the dual layer metal nanocrystal-based stack arises from the dominance of the quantum tunneling throughout the relaxation. In addition, we verify that stacks containing dual layer MNC show better retention property than their single layer counterparts. Our results demonstrate that relaxation current measurements offer a simple way to assess the charge retention capability for MNC-based gate stacks.</abstract><doi>10.1063/1.4764873</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2012-11, Vol.112 (10)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_miscellaneous_1417884661
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Aluminum oxide
Dominance
Gates
Nanocrystals
Platinum
Silicon dioxide
Stacks
Tunneling
title Temperature-dependent relaxation current on single and dual layer Pt metal nanocrystal-based Al2O3/SiO2 gate stack
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-dependent%20relaxation%20current%20on%20single%20and%20dual%20layer%20Pt%20metal%20nanocrystal-based%20Al2O3/SiO2%20gate%20stack&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Chen,%20Y.%20N.&rft.date=2012-11-15&rft.volume=112&rft.issue=10&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4764873&rft_dat=%3Cproquest_cross%3E1417884661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417884661&rft_id=info:pmid/&rfr_iscdi=true