Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals
In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-o...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2012, Vol.12 (1-4), p.545-552 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 552 |
---|---|
container_issue | 1-4 |
container_start_page | 545 |
container_title | Microfluidics and nanofluidics |
container_volume | 12 |
creator | Barillaro, G. Merlo, S. Surdo, S. Strambini, L. M. Carpignano, F. |
description | In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-order bandgaps in the near-infrared region, bonded to a glass cover provided with inlet/outlet holes for liquid injection/extraction in/out the PhC-itself. Wavelength shifts of the reflectivity spectrum of the photonic crystal, in the range 1.0–1.7 μm, induced by flow of different liquids through the PhC air gaps are successfully measured using an in-plane all-fibre setup, thanks to the PhC high aspect-ratio value. Experimental results well agree with theoretical predictions and highlight the good linearity and high sensitivity of such an optofluidic microsystem in measuring refractive index changes. The sensitivity value is estimated to be 1,049 nm/RIU around 1.55 μm, which is among the highest reported in the literature for integrated refractive index sensors, and explained in terms of enhanced interaction between light and liquid within the PhC. |
doi_str_mv | 10.1007/s10404-011-0896-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417874651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417868027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-82cdbbf9c87a51e4a5e78f669d4fec33b71c81386920770c212c9874a0dc501b3</originalsourceid><addsrcrecordid>eNqNkV9LwzAUxYsoOKcfwLeCCL5E703TJnmU4Z_BwBd9LmmabhltM5NO2Lc3ZWOIIPh0L_f87iG5J0muEe4RgD8EBAaMACIBIQsCJ8kEC8wIkxJOj72g58lFCGsAxinCJLHzfjBLrwZTp24zuKbd2trqtLPau7ALg-nSSoVR7dMv4werVZuu7HJFnK-Nj2NDatuZPljXRynY1urIblZucH100j66qDZcJmdNLObqUKfJx_PT--yVLN5e5rPHBdEM6UAE1XVVNVILrnI0TOWGi6YoZM0ao7Os4qgFZqKQFDgHTZFqKThTUOscsMqmyd3ed-Pd59aEoexs0KZtVW_cNpTIkEe-yPF_aCGA8oje_ELXbuvjhyMFMi9ohnkWKdxT4_GCN0258bZTfhehcsyp3OdUxpzKMacS4s7twVmFeNvGq17bcFykeS4hYyNH91yIUr80_ucL_jL_BpnkouA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095623153</pqid></control><display><type>article</type><title>Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Barillaro, G. ; Merlo, S. ; Surdo, S. ; Strambini, L. M. ; Carpignano, F.</creator><creatorcontrib>Barillaro, G. ; Merlo, S. ; Surdo, S. ; Strambini, L. M. ; Carpignano, F.</creatorcontrib><description>In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-order bandgaps in the near-infrared region, bonded to a glass cover provided with inlet/outlet holes for liquid injection/extraction in/out the PhC-itself. Wavelength shifts of the reflectivity spectrum of the photonic crystal, in the range 1.0–1.7 μm, induced by flow of different liquids through the PhC air gaps are successfully measured using an in-plane all-fibre setup, thanks to the PhC high aspect-ratio value. Experimental results well agree with theoretical predictions and highlight the good linearity and high sensitivity of such an optofluidic microsystem in measuring refractive index changes. The sensitivity value is estimated to be 1,049 nm/RIU around 1.55 μm, which is among the highest reported in the literature for integrated refractive index sensors, and explained in terms of enhanced interaction between light and liquid within the PhC.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-011-0896-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Applied fluid mechanics ; Biomedical Engineering and Bioengineering ; Crystals ; Engineering ; Engineering Fluid Dynamics ; Exact sciences and technology ; Fabrication ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Linearity ; Liquids ; Nanostructure ; Nanotechnology and Microengineering ; Optical elements, devices, and systems ; Optics ; Photonic band gaps ; Photonic crystals ; Physics ; Refractive index ; Refractivity ; Research Paper ; Silicon</subject><ispartof>Microfluidics and nanofluidics, 2012, Vol.12 (1-4), p.545-552</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-82cdbbf9c87a51e4a5e78f669d4fec33b71c81386920770c212c9874a0dc501b3</citedby><cites>FETCH-LOGICAL-c412t-82cdbbf9c87a51e4a5e78f669d4fec33b71c81386920770c212c9874a0dc501b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-011-0896-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-011-0896-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25590340$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Barillaro, G.</creatorcontrib><creatorcontrib>Merlo, S.</creatorcontrib><creatorcontrib>Surdo, S.</creatorcontrib><creatorcontrib>Strambini, L. M.</creatorcontrib><creatorcontrib>Carpignano, F.</creatorcontrib><title>Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-order bandgaps in the near-infrared region, bonded to a glass cover provided with inlet/outlet holes for liquid injection/extraction in/out the PhC-itself. Wavelength shifts of the reflectivity spectrum of the photonic crystal, in the range 1.0–1.7 μm, induced by flow of different liquids through the PhC air gaps are successfully measured using an in-plane all-fibre setup, thanks to the PhC high aspect-ratio value. Experimental results well agree with theoretical predictions and highlight the good linearity and high sensitivity of such an optofluidic microsystem in measuring refractive index changes. The sensitivity value is estimated to be 1,049 nm/RIU around 1.55 μm, which is among the highest reported in the literature for integrated refractive index sensors, and explained in terms of enhanced interaction between light and liquid within the PhC.</description><subject>Analytical Chemistry</subject><subject>Applied fluid mechanics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Crystals</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linearity</subject><subject>Liquids</subject><subject>Nanostructure</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical elements, devices, and systems</subject><subject>Optics</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Physics</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Research Paper</subject><subject>Silicon</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV9LwzAUxYsoOKcfwLeCCL5E703TJnmU4Z_BwBd9LmmabhltM5NO2Lc3ZWOIIPh0L_f87iG5J0muEe4RgD8EBAaMACIBIQsCJ8kEC8wIkxJOj72g58lFCGsAxinCJLHzfjBLrwZTp24zuKbd2trqtLPau7ALg-nSSoVR7dMv4werVZuu7HJFnK-Nj2NDatuZPljXRynY1urIblZucH100j66qDZcJmdNLObqUKfJx_PT--yVLN5e5rPHBdEM6UAE1XVVNVILrnI0TOWGi6YoZM0ao7Os4qgFZqKQFDgHTZFqKThTUOscsMqmyd3ed-Pd59aEoexs0KZtVW_cNpTIkEe-yPF_aCGA8oje_ELXbuvjhyMFMi9ohnkWKdxT4_GCN0258bZTfhehcsyp3OdUxpzKMacS4s7twVmFeNvGq17bcFykeS4hYyNH91yIUr80_ucL_jL_BpnkouA</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Barillaro, G.</creator><creator>Merlo, S.</creator><creator>Surdo, S.</creator><creator>Strambini, L. M.</creator><creator>Carpignano, F.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>2012</creationdate><title>Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals</title><author>Barillaro, G. ; Merlo, S. ; Surdo, S. ; Strambini, L. M. ; Carpignano, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-82cdbbf9c87a51e4a5e78f669d4fec33b71c81386920770c212c9874a0dc501b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical Chemistry</topic><topic>Applied fluid mechanics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Crystals</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linearity</topic><topic>Liquids</topic><topic>Nanostructure</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical elements, devices, and systems</topic><topic>Optics</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Physics</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Research Paper</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barillaro, G.</creatorcontrib><creatorcontrib>Merlo, S.</creatorcontrib><creatorcontrib>Surdo, S.</creatorcontrib><creatorcontrib>Strambini, L. M.</creatorcontrib><creatorcontrib>Carpignano, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barillaro, G.</au><au>Merlo, S.</au><au>Surdo, S.</au><au>Strambini, L. M.</au><au>Carpignano, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2012</date><risdate>2012</risdate><volume>12</volume><issue>1-4</issue><spage>545</spage><epage>552</epage><pages>545-552</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-order bandgaps in the near-infrared region, bonded to a glass cover provided with inlet/outlet holes for liquid injection/extraction in/out the PhC-itself. Wavelength shifts of the reflectivity spectrum of the photonic crystal, in the range 1.0–1.7 μm, induced by flow of different liquids through the PhC air gaps are successfully measured using an in-plane all-fibre setup, thanks to the PhC high aspect-ratio value. Experimental results well agree with theoretical predictions and highlight the good linearity and high sensitivity of such an optofluidic microsystem in measuring refractive index changes. The sensitivity value is estimated to be 1,049 nm/RIU around 1.55 μm, which is among the highest reported in the literature for integrated refractive index sensors, and explained in terms of enhanced interaction between light and liquid within the PhC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10404-011-0896-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2012, Vol.12 (1-4), p.545-552 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_miscellaneous_1417874651 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Applied fluid mechanics Biomedical Engineering and Bioengineering Crystals Engineering Engineering Fluid Dynamics Exact sciences and technology Fabrication Fluid dynamics Fluidics Fundamental areas of phenomenology (including applications) Linearity Liquids Nanostructure Nanotechnology and Microengineering Optical elements, devices, and systems Optics Photonic band gaps Photonic crystals Physics Refractive index Refractivity Research Paper Silicon |
title | Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20optofluidic%20microsystem%20based%20on%20vertical%20high-order%20one-dimensional%20silicon%20photonic%20crystals&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Barillaro,%20G.&rft.date=2012&rft.volume=12&rft.issue=1-4&rft.spage=545&rft.epage=552&rft.pages=545-552&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-011-0896-0&rft_dat=%3Cproquest_cross%3E1417868027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095623153&rft_id=info:pmid/&rfr_iscdi=true |