Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals

In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microfluidics and nanofluidics 2012, Vol.12 (1-4), p.545-552
Hauptverfasser: Barillaro, G., Merlo, S., Surdo, S., Strambini, L. M., Carpignano, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 552
container_issue 1-4
container_start_page 545
container_title Microfluidics and nanofluidics
container_volume 12
creator Barillaro, G.
Merlo, S.
Surdo, S.
Strambini, L. M.
Carpignano, F.
description In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-order bandgaps in the near-infrared region, bonded to a glass cover provided with inlet/outlet holes for liquid injection/extraction in/out the PhC-itself. Wavelength shifts of the reflectivity spectrum of the photonic crystal, in the range 1.0–1.7 μm, induced by flow of different liquids through the PhC air gaps are successfully measured using an in-plane all-fibre setup, thanks to the PhC high aspect-ratio value. Experimental results well agree with theoretical predictions and highlight the good linearity and high sensitivity of such an optofluidic microsystem in measuring refractive index changes. The sensitivity value is estimated to be 1,049 nm/RIU around 1.55 μm, which is among the highest reported in the literature for integrated refractive index sensors, and explained in terms of enhanced interaction between light and liquid within the PhC.
doi_str_mv 10.1007/s10404-011-0896-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417874651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417868027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-82cdbbf9c87a51e4a5e78f669d4fec33b71c81386920770c212c9874a0dc501b3</originalsourceid><addsrcrecordid>eNqNkV9LwzAUxYsoOKcfwLeCCL5E703TJnmU4Z_BwBd9LmmabhltM5NO2Lc3ZWOIIPh0L_f87iG5J0muEe4RgD8EBAaMACIBIQsCJ8kEC8wIkxJOj72g58lFCGsAxinCJLHzfjBLrwZTp24zuKbd2trqtLPau7ALg-nSSoVR7dMv4werVZuu7HJFnK-Nj2NDatuZPljXRynY1urIblZucH100j66qDZcJmdNLObqUKfJx_PT--yVLN5e5rPHBdEM6UAE1XVVNVILrnI0TOWGi6YoZM0ao7Os4qgFZqKQFDgHTZFqKThTUOscsMqmyd3ed-Pd59aEoexs0KZtVW_cNpTIkEe-yPF_aCGA8oje_ELXbuvjhyMFMi9ohnkWKdxT4_GCN0258bZTfhehcsyp3OdUxpzKMacS4s7twVmFeNvGq17bcFykeS4hYyNH91yIUr80_ucL_jL_BpnkouA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095623153</pqid></control><display><type>article</type><title>Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Barillaro, G. ; Merlo, S. ; Surdo, S. ; Strambini, L. M. ; Carpignano, F.</creator><creatorcontrib>Barillaro, G. ; Merlo, S. ; Surdo, S. ; Strambini, L. M. ; Carpignano, F.</creatorcontrib><description>In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-order bandgaps in the near-infrared region, bonded to a glass cover provided with inlet/outlet holes for liquid injection/extraction in/out the PhC-itself. Wavelength shifts of the reflectivity spectrum of the photonic crystal, in the range 1.0–1.7 μm, induced by flow of different liquids through the PhC air gaps are successfully measured using an in-plane all-fibre setup, thanks to the PhC high aspect-ratio value. Experimental results well agree with theoretical predictions and highlight the good linearity and high sensitivity of such an optofluidic microsystem in measuring refractive index changes. The sensitivity value is estimated to be 1,049 nm/RIU around 1.55 μm, which is among the highest reported in the literature for integrated refractive index sensors, and explained in terms of enhanced interaction between light and liquid within the PhC.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-011-0896-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Applied fluid mechanics ; Biomedical Engineering and Bioengineering ; Crystals ; Engineering ; Engineering Fluid Dynamics ; Exact sciences and technology ; Fabrication ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Linearity ; Liquids ; Nanostructure ; Nanotechnology and Microengineering ; Optical elements, devices, and systems ; Optics ; Photonic band gaps ; Photonic crystals ; Physics ; Refractive index ; Refractivity ; Research Paper ; Silicon</subject><ispartof>Microfluidics and nanofluidics, 2012, Vol.12 (1-4), p.545-552</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-82cdbbf9c87a51e4a5e78f669d4fec33b71c81386920770c212c9874a0dc501b3</citedby><cites>FETCH-LOGICAL-c412t-82cdbbf9c87a51e4a5e78f669d4fec33b71c81386920770c212c9874a0dc501b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-011-0896-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-011-0896-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25590340$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Barillaro, G.</creatorcontrib><creatorcontrib>Merlo, S.</creatorcontrib><creatorcontrib>Surdo, S.</creatorcontrib><creatorcontrib>Strambini, L. M.</creatorcontrib><creatorcontrib>Carpignano, F.</creatorcontrib><title>Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-order bandgaps in the near-infrared region, bonded to a glass cover provided with inlet/outlet holes for liquid injection/extraction in/out the PhC-itself. Wavelength shifts of the reflectivity spectrum of the photonic crystal, in the range 1.0–1.7 μm, induced by flow of different liquids through the PhC air gaps are successfully measured using an in-plane all-fibre setup, thanks to the PhC high aspect-ratio value. Experimental results well agree with theoretical predictions and highlight the good linearity and high sensitivity of such an optofluidic microsystem in measuring refractive index changes. The sensitivity value is estimated to be 1,049 nm/RIU around 1.55 μm, which is among the highest reported in the literature for integrated refractive index sensors, and explained in terms of enhanced interaction between light and liquid within the PhC.</description><subject>Analytical Chemistry</subject><subject>Applied fluid mechanics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Crystals</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linearity</subject><subject>Liquids</subject><subject>Nanostructure</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical elements, devices, and systems</subject><subject>Optics</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Physics</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Research Paper</subject><subject>Silicon</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV9LwzAUxYsoOKcfwLeCCL5E703TJnmU4Z_BwBd9LmmabhltM5NO2Lc3ZWOIIPh0L_f87iG5J0muEe4RgD8EBAaMACIBIQsCJ8kEC8wIkxJOj72g58lFCGsAxinCJLHzfjBLrwZTp24zuKbd2trqtLPau7ALg-nSSoVR7dMv4werVZuu7HJFnK-Nj2NDatuZPljXRynY1urIblZucH100j66qDZcJmdNLObqUKfJx_PT--yVLN5e5rPHBdEM6UAE1XVVNVILrnI0TOWGi6YoZM0ao7Os4qgFZqKQFDgHTZFqKThTUOscsMqmyd3ed-Pd59aEoexs0KZtVW_cNpTIkEe-yPF_aCGA8oje_ELXbuvjhyMFMi9ohnkWKdxT4_GCN0258bZTfhehcsyp3OdUxpzKMacS4s7twVmFeNvGq17bcFykeS4hYyNH91yIUr80_ucL_jL_BpnkouA</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Barillaro, G.</creator><creator>Merlo, S.</creator><creator>Surdo, S.</creator><creator>Strambini, L. M.</creator><creator>Carpignano, F.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>2012</creationdate><title>Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals</title><author>Barillaro, G. ; Merlo, S. ; Surdo, S. ; Strambini, L. M. ; Carpignano, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-82cdbbf9c87a51e4a5e78f669d4fec33b71c81386920770c212c9874a0dc501b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical Chemistry</topic><topic>Applied fluid mechanics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Crystals</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linearity</topic><topic>Liquids</topic><topic>Nanostructure</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical elements, devices, and systems</topic><topic>Optics</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Physics</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Research Paper</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barillaro, G.</creatorcontrib><creatorcontrib>Merlo, S.</creatorcontrib><creatorcontrib>Surdo, S.</creatorcontrib><creatorcontrib>Strambini, L. M.</creatorcontrib><creatorcontrib>Carpignano, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barillaro, G.</au><au>Merlo, S.</au><au>Surdo, S.</au><au>Strambini, L. M.</au><au>Carpignano, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2012</date><risdate>2012</risdate><volume>12</volume><issue>1-4</issue><spage>545</spage><epage>552</epage><pages>545-552</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-order bandgaps in the near-infrared region, bonded to a glass cover provided with inlet/outlet holes for liquid injection/extraction in/out the PhC-itself. Wavelength shifts of the reflectivity spectrum of the photonic crystal, in the range 1.0–1.7 μm, induced by flow of different liquids through the PhC air gaps are successfully measured using an in-plane all-fibre setup, thanks to the PhC high aspect-ratio value. Experimental results well agree with theoretical predictions and highlight the good linearity and high sensitivity of such an optofluidic microsystem in measuring refractive index changes. The sensitivity value is estimated to be 1,049 nm/RIU around 1.55 μm, which is among the highest reported in the literature for integrated refractive index sensors, and explained in terms of enhanced interaction between light and liquid within the PhC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10404-011-0896-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2012, Vol.12 (1-4), p.545-552
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_miscellaneous_1417874651
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Applied fluid mechanics
Biomedical Engineering and Bioengineering
Crystals
Engineering
Engineering Fluid Dynamics
Exact sciences and technology
Fabrication
Fluid dynamics
Fluidics
Fundamental areas of phenomenology (including applications)
Linearity
Liquids
Nanostructure
Nanotechnology and Microengineering
Optical elements, devices, and systems
Optics
Photonic band gaps
Photonic crystals
Physics
Refractive index
Refractivity
Research Paper
Silicon
title Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20optofluidic%20microsystem%20based%20on%20vertical%20high-order%20one-dimensional%20silicon%20photonic%20crystals&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Barillaro,%20G.&rft.date=2012&rft.volume=12&rft.issue=1-4&rft.spage=545&rft.epage=552&rft.pages=545-552&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-011-0896-0&rft_dat=%3Cproquest_cross%3E1417868027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095623153&rft_id=info:pmid/&rfr_iscdi=true