A Quantitative Approach to Input Generation in Real-Time Testing of Stochastic Systems

In the process of testing of concurrent timed systems, input generation identifies values of temporal parameters that let the Implementation Under Test (IUT) execute selected cases. However, when some parameters are not under control of the driver, test execution may diverge from the selected input...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering 2013-03, Vol.39 (3), p.292-304
Hauptverfasser: Carnevali, L., Ridi, L., Vicario, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 3
container_start_page 292
container_title IEEE transactions on software engineering
container_volume 39
creator Carnevali, L.
Ridi, L.
Vicario, E.
description In the process of testing of concurrent timed systems, input generation identifies values of temporal parameters that let the Implementation Under Test (IUT) execute selected cases. However, when some parameters are not under control of the driver, test execution may diverge from the selected input and produce an inconclusive behavior. We formulate the problem on the basis of an abstraction of the IUT which we call partially stochastic Time Petri Net (psTPN), where controllable parameters are modeled as nondeterministic values and noncontrollable parameters as random variables with general (GEN) distribution. With reference to this abstraction, we derive the analytical form of the probability that the IUT runs along a selected behavior as a function of choices taken on controllable parameters. In the applicative perspective of real-time testing, this identifies a theoretical upper limit on the probability of a conclusive result, thus providing a means to plan the number of test repetitions that are necessary to guarantee a given probability of test-case coverage. It also provides a constructive technique for an optimal or suboptimal approach to input generation and a way to characterize the probability of conclusive testing under other suboptimal strategies.
doi_str_mv 10.1109/TSE.2012.42
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417870119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6226426</ieee_id><sourcerecordid>1417870119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-abb1b412edfa0a0664d076bd5b3ccc48247f858316facde61c0c7cea20f18c783</originalsourceid><addsrcrecordid>eNpdkM9LwzAYhoMoOKcnj14CXgTp_JKmaXscY05hILrqNaTpV9fRXzapsP_ejIkHTx8v38PLy0PINYMZY5A-ZJvljAPjM8FPyISlYRqEEYdTMgFIkyCKkvScXFi7A4AojqMJ-ZjT11G3rnLaVd9I530_dNpsqevoc9uPjq6wxcE_u5ZWLX1DXQdZ1SDN0Lqq_aRdSTeuM1vto6GbvXXY2EtyVura4tXvnZL3x2W2eArWL6vnxXwdmJAJF-g8Z7lgHItSgwYpRQGxzIsoD40xIuEiLpMoCZkstSlQMgMmNqg5lCwxcRJOyd2x16_-Gv0i1VTWYF3rFrvRKiZYnMTAvIopuf2H7rpxaP06xUIpQfi6A3V_pMzQWTtgqfqhavSwVwzUwbHyjtXBsRLc0zdHukLEP1JyLgWX4Q8UZXcq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1366047839</pqid></control><display><type>article</type><title>A Quantitative Approach to Input Generation in Real-Time Testing of Stochastic Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Carnevali, L. ; Ridi, L. ; Vicario, E.</creator><creatorcontrib>Carnevali, L. ; Ridi, L. ; Vicario, E.</creatorcontrib><description>In the process of testing of concurrent timed systems, input generation identifies values of temporal parameters that let the Implementation Under Test (IUT) execute selected cases. However, when some parameters are not under control of the driver, test execution may diverge from the selected input and produce an inconclusive behavior. We formulate the problem on the basis of an abstraction of the IUT which we call partially stochastic Time Petri Net (psTPN), where controllable parameters are modeled as nondeterministic values and noncontrollable parameters as random variables with general (GEN) distribution. With reference to this abstraction, we derive the analytical form of the probability that the IUT runs along a selected behavior as a function of choices taken on controllable parameters. In the applicative perspective of real-time testing, this identifies a theoretical upper limit on the probability of a conclusive result, thus providing a means to plan the number of test repetitions that are necessary to guarantee a given probability of test-case coverage. It also provides a constructive technique for an optimal or suboptimal approach to input generation and a way to characterize the probability of conclusive testing under other suboptimal strategies.</description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/TSE.2012.42</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automata ; Difference Bound Matrix ; input generation ; Mathematical analysis ; Mathematical models ; Mathematical problems ; non-Markovian Stochastic Petri Nets ; Optimization ; Probability distribution ; Random variables ; Real time ; Real time systems ; Real-time testing ; Stability ; Stochastic models ; Stochastic processes ; Stochastic systems ; Strategy ; Studies ; Temporal logic ; Testing ; Time Petri Nets ; Timing ; Tin ; Vectors</subject><ispartof>IEEE transactions on software engineering, 2013-03, Vol.39 (3), p.292-304</ispartof><rights>Copyright IEEE Computer Society Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-abb1b412edfa0a0664d076bd5b3ccc48247f858316facde61c0c7cea20f18c783</citedby><cites>FETCH-LOGICAL-c314t-abb1b412edfa0a0664d076bd5b3ccc48247f858316facde61c0c7cea20f18c783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6226426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6226426$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carnevali, L.</creatorcontrib><creatorcontrib>Ridi, L.</creatorcontrib><creatorcontrib>Vicario, E.</creatorcontrib><title>A Quantitative Approach to Input Generation in Real-Time Testing of Stochastic Systems</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description>In the process of testing of concurrent timed systems, input generation identifies values of temporal parameters that let the Implementation Under Test (IUT) execute selected cases. However, when some parameters are not under control of the driver, test execution may diverge from the selected input and produce an inconclusive behavior. We formulate the problem on the basis of an abstraction of the IUT which we call partially stochastic Time Petri Net (psTPN), where controllable parameters are modeled as nondeterministic values and noncontrollable parameters as random variables with general (GEN) distribution. With reference to this abstraction, we derive the analytical form of the probability that the IUT runs along a selected behavior as a function of choices taken on controllable parameters. In the applicative perspective of real-time testing, this identifies a theoretical upper limit on the probability of a conclusive result, thus providing a means to plan the number of test repetitions that are necessary to guarantee a given probability of test-case coverage. It also provides a constructive technique for an optimal or suboptimal approach to input generation and a way to characterize the probability of conclusive testing under other suboptimal strategies.</description><subject>Automata</subject><subject>Difference Bound Matrix</subject><subject>input generation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>non-Markovian Stochastic Petri Nets</subject><subject>Optimization</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Real time</subject><subject>Real time systems</subject><subject>Real-time testing</subject><subject>Stability</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Strategy</subject><subject>Studies</subject><subject>Temporal logic</subject><subject>Testing</subject><subject>Time Petri Nets</subject><subject>Timing</subject><subject>Tin</subject><subject>Vectors</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAYhoMoOKcnj14CXgTp_JKmaXscY05hILrqNaTpV9fRXzapsP_ejIkHTx8v38PLy0PINYMZY5A-ZJvljAPjM8FPyISlYRqEEYdTMgFIkyCKkvScXFi7A4AojqMJ-ZjT11G3rnLaVd9I530_dNpsqevoc9uPjq6wxcE_u5ZWLX1DXQdZ1SDN0Lqq_aRdSTeuM1vto6GbvXXY2EtyVura4tXvnZL3x2W2eArWL6vnxXwdmJAJF-g8Z7lgHItSgwYpRQGxzIsoD40xIuEiLpMoCZkstSlQMgMmNqg5lCwxcRJOyd2x16_-Gv0i1VTWYF3rFrvRKiZYnMTAvIopuf2H7rpxaP06xUIpQfi6A3V_pMzQWTtgqfqhavSwVwzUwbHyjtXBsRLc0zdHukLEP1JyLgWX4Q8UZXcq</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Carnevali, L.</creator><creator>Ridi, L.</creator><creator>Vicario, E.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130301</creationdate><title>A Quantitative Approach to Input Generation in Real-Time Testing of Stochastic Systems</title><author>Carnevali, L. ; Ridi, L. ; Vicario, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-abb1b412edfa0a0664d076bd5b3ccc48247f858316facde61c0c7cea20f18c783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automata</topic><topic>Difference Bound Matrix</topic><topic>input generation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>non-Markovian Stochastic Petri Nets</topic><topic>Optimization</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Real time</topic><topic>Real time systems</topic><topic>Real-time testing</topic><topic>Stability</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Strategy</topic><topic>Studies</topic><topic>Temporal logic</topic><topic>Testing</topic><topic>Time Petri Nets</topic><topic>Timing</topic><topic>Tin</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carnevali, L.</creatorcontrib><creatorcontrib>Ridi, L.</creatorcontrib><creatorcontrib>Vicario, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carnevali, L.</au><au>Ridi, L.</au><au>Vicario, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quantitative Approach to Input Generation in Real-Time Testing of Stochastic Systems</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>39</volume><issue>3</issue><spage>292</spage><epage>304</epage><pages>292-304</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract>In the process of testing of concurrent timed systems, input generation identifies values of temporal parameters that let the Implementation Under Test (IUT) execute selected cases. However, when some parameters are not under control of the driver, test execution may diverge from the selected input and produce an inconclusive behavior. We formulate the problem on the basis of an abstraction of the IUT which we call partially stochastic Time Petri Net (psTPN), where controllable parameters are modeled as nondeterministic values and noncontrollable parameters as random variables with general (GEN) distribution. With reference to this abstraction, we derive the analytical form of the probability that the IUT runs along a selected behavior as a function of choices taken on controllable parameters. In the applicative perspective of real-time testing, this identifies a theoretical upper limit on the probability of a conclusive result, thus providing a means to plan the number of test repetitions that are necessary to guarantee a given probability of test-case coverage. It also provides a constructive technique for an optimal or suboptimal approach to input generation and a way to characterize the probability of conclusive testing under other suboptimal strategies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSE.2012.42</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-5589
ispartof IEEE transactions on software engineering, 2013-03, Vol.39 (3), p.292-304
issn 0098-5589
1939-3520
language eng
recordid cdi_proquest_miscellaneous_1417870119
source IEEE Electronic Library (IEL)
subjects Automata
Difference Bound Matrix
input generation
Mathematical analysis
Mathematical models
Mathematical problems
non-Markovian Stochastic Petri Nets
Optimization
Probability distribution
Random variables
Real time
Real time systems
Real-time testing
Stability
Stochastic models
Stochastic processes
Stochastic systems
Strategy
Studies
Temporal logic
Testing
Time Petri Nets
Timing
Tin
Vectors
title A Quantitative Approach to Input Generation in Real-Time Testing of Stochastic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quantitative%20Approach%20to%20Input%20Generation%20in%20Real-Time%20Testing%20of%20Stochastic%20Systems&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=Carnevali,%20L.&rft.date=2013-03-01&rft.volume=39&rft.issue=3&rft.spage=292&rft.epage=304&rft.pages=292-304&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/TSE.2012.42&rft_dat=%3Cproquest_RIE%3E1417870119%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1366047839&rft_id=info:pmid/&rft_ieee_id=6226426&rfr_iscdi=true