Reactivating head regrowth in a regeneration-deficient planarian species
Although the capacity for tissue regeneration of planarians is exceptional, planarians with more limited regenerative capacities are known; here knocking down components of the Wnt signalling pathway rescues head regeneration in the regeneration-impaired planarian Dendrocoelum lacteum , revealing th...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2013-08, Vol.500 (7460), p.81-84 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 7460 |
container_start_page | 81 |
container_title | Nature (London) |
container_volume | 500 |
creator | Liu, S.-Y. Selck, C. Friedrich, B. Lutz, R. Vila-Farré, M. Dahl, A. Brandl, H. Lakshmanaperumal, N. Henry, I. Rink, J. C. |
description | Although the capacity for tissue regeneration of planarians is exceptional, planarians with more limited regenerative capacities are known; here knocking down components of the Wnt signalling pathway rescues head regeneration in the regeneration-impaired planarian
Dendrocoelum lacteum
, revealing that manipulating a single signalling pathway can reverse the evolutionary loss of regenerative potential.
Controlling planarian regeneration capacity
Planarians are flatworms common in streams and ponds whose capacity for tissue regeneration is legendary. But with more limited regenerative capacities are known. Three papers published in
Nature
this week study
Planaria
with differing regenerative capacities and identify the Wnt/β-catenin molecular signalling pathway, important in embryonic development and adult homeostasis in multicellular organisms, as central to the regeneration mechanism. Yoshihiko Umesono
et al
. identify ERK and β-catenin signalling as the basis for a morphogenetic gradient along the anterior–posterior axis that is required for regeneration. These authors also demonstrate that inhibition of β-catenin can rescue head regeneration in
Phagocata kawakatsui
, a planarian that otherwise cannot regenerate heads from the posterior pieces. James Sikes and Phillip Newmark show in
Procotyla fluviatilis
, which has restricted ability to replace missing tissues, that Wnt signalling is aberrantly regulated in regeneration-deficient tissues. Downregulation of Wnt signalling in these regions restores regenerative abilities, including the formation of blastemas and even new heads. Jochen Rink and colleagues show that in the otherwise regeneration-incompetent
Dendrocoelum lacteum
, knockdown of components in the Wnt signalling pathway introduces the ability to regenerate lost tissues.
Species capable of regenerating lost body parts occur throughout the animal kingdom, yet close relatives are often regeneration incompetent
1
,
2
. Why in the face of ‘survival of the fittest’ some animals regenerate but others do not remains a fascinating question
3
. Planarian flatworms are well known and studied for their ability to regenerate from minute tissue pieces, yet species with limited regeneration abilities have been described even amongst planarians
4
. Here we report the characterization of the regeneration defect in the planarian
Dendrocoelum lacteum
and its successful rescue. Tissue fragments cut from the posterior half of the body of this species are unable to r |
doi_str_mv | 10.1038/nature12414 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417529114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A338894125</galeid><sourcerecordid>A338894125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c659t-a1bd70df7ce7074d3fc617b348a6bb547edf83d98a4bbd146fb25daccef8a393</originalsourceid><addsrcrecordid>eNp10s9rFDEUB_AgFrtWT95lsBdFpyaTzCRzXBZtC0WhLngMmeTNNGU2M00y_vjvzbKt3ZWRHEKSTx6PLw-hVwSfEUzFR6fi5IEUjLAnaEEYr3JWCf4ULTAuRI4FrY7R8xBuMcYl4ewZOi6oELSmxQJdXIPS0f5Q0bouuwFlMg-dH37Gm8y6TG1P4MCn98HlBlqrLbiYjb1yylvlsjBCugov0FGr-gAv7_cTtP78ab26yK--nl-ulle5rso65oo0hmPTcg0cc2ZoqyvCG8qEqpqmZBxMK6iphWJNYwir2qYojdIaWqFSyyfo7a7s6Ie7CUKUGxs09KkdGKYgCSO8LGpCWKKn_9DbYfIuNZcUJWVd0Io_qk71IK1rh-iV3haVS5piqhkpyqTyGbVLph9ciiVdH_g3M16P9k7uo7MZlJaBjdWzVd8dfEgmwq_YqSkEefnt-tC-_79drr-vvsxq7YcQPLRy9Haj_G9JsNxOmdybsqRf3yc7NRswf-3DWCXwYQdCenId-L3oZ-r9ARTl2Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431592367</pqid></control><display><type>article</type><title>Reactivating head regrowth in a regeneration-deficient planarian species</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, S.-Y. ; Selck, C. ; Friedrich, B. ; Lutz, R. ; Vila-Farré, M. ; Dahl, A. ; Brandl, H. ; Lakshmanaperumal, N. ; Henry, I. ; Rink, J. C.</creator><creatorcontrib>Liu, S.-Y. ; Selck, C. ; Friedrich, B. ; Lutz, R. ; Vila-Farré, M. ; Dahl, A. ; Brandl, H. ; Lakshmanaperumal, N. ; Henry, I. ; Rink, J. C.</creatorcontrib><description>Although the capacity for tissue regeneration of planarians is exceptional, planarians with more limited regenerative capacities are known; here knocking down components of the Wnt signalling pathway rescues head regeneration in the regeneration-impaired planarian
Dendrocoelum lacteum
, revealing that manipulating a single signalling pathway can reverse the evolutionary loss of regenerative potential.
Controlling planarian regeneration capacity
Planarians are flatworms common in streams and ponds whose capacity for tissue regeneration is legendary. But with more limited regenerative capacities are known. Three papers published in
Nature
this week study
Planaria
with differing regenerative capacities and identify the Wnt/β-catenin molecular signalling pathway, important in embryonic development and adult homeostasis in multicellular organisms, as central to the regeneration mechanism. Yoshihiko Umesono
et al
. identify ERK and β-catenin signalling as the basis for a morphogenetic gradient along the anterior–posterior axis that is required for regeneration. These authors also demonstrate that inhibition of β-catenin can rescue head regeneration in
Phagocata kawakatsui
, a planarian that otherwise cannot regenerate heads from the posterior pieces. James Sikes and Phillip Newmark show in
Procotyla fluviatilis
, which has restricted ability to replace missing tissues, that Wnt signalling is aberrantly regulated in regeneration-deficient tissues. Downregulation of Wnt signalling in these regions restores regenerative abilities, including the formation of blastemas and even new heads. Jochen Rink and colleagues show that in the otherwise regeneration-incompetent
Dendrocoelum lacteum
, knockdown of components in the Wnt signalling pathway introduces the ability to regenerate lost tissues.
Species capable of regenerating lost body parts occur throughout the animal kingdom, yet close relatives are often regeneration incompetent
1
,
2
. Why in the face of ‘survival of the fittest’ some animals regenerate but others do not remains a fascinating question
3
. Planarian flatworms are well known and studied for their ability to regenerate from minute tissue pieces, yet species with limited regeneration abilities have been described even amongst planarians
4
. Here we report the characterization of the regeneration defect in the planarian
Dendrocoelum lacteum
and its successful rescue. Tissue fragments cut from the posterior half of the body of this species are unable to regenerate a head and ultimately die
5
. We find that this defect originates during the early stages of head specification, which require inhibition of canonical Wnt signalling in other planarian species
6
,
7
,
8
. Notably, RNA interference (RNAi)-mediated knockdown of
Dlac-β-catenin-1
, the Wnt signal transducer, restored the regeneration of fully functional heads on tail pieces, rescuing
D. lacteum
’s regeneration defect. Our results demonstrate the utility of comparative studies towards the reactivation of regenerative abilities in regeneration-deficient animals. Furthermore, the availability of
D. lacteum
as a regeneration-impaired planarian model species provides a first step towards elucidating the evolutionary mechanisms that ultimately determine why some animals regenerate and others do not.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature12414</identifier><identifier>PMID: 23883932</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/136 ; Amputation ; Animals ; beta Catenin - biosynthesis ; beta Catenin - deficiency ; beta Catenin - genetics ; beta Catenin - metabolism ; Body Patterning ; Cloning ; Comparative studies ; Defects ; Experiments ; Genes ; Genetic engineering ; Head - growth & development ; Head - physiology ; Histology ; Humanities and Social Sciences ; Hybridization ; letter ; Ligands ; Models, Animal ; Molecular Sequence Data ; multidisciplinary ; Physiological aspects ; Planarians - anatomy & histology ; Planarians - physiology ; Platyhelminthes ; Regeneration ; Regeneration (Biology) ; Regrowth ; Science ; Tail - growth & development ; Wnt Proteins - metabolism ; Wnt Signaling Pathway</subject><ispartof>Nature (London), 2013-08, Vol.500 (7460), p.81-84</ispartof><rights>Springer Nature Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 1, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c659t-a1bd70df7ce7074d3fc617b348a6bb547edf83d98a4bbd146fb25daccef8a393</citedby><cites>FETCH-LOGICAL-c659t-a1bd70df7ce7074d3fc617b348a6bb547edf83d98a4bbd146fb25daccef8a393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature12414$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature12414$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23883932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, S.-Y.</creatorcontrib><creatorcontrib>Selck, C.</creatorcontrib><creatorcontrib>Friedrich, B.</creatorcontrib><creatorcontrib>Lutz, R.</creatorcontrib><creatorcontrib>Vila-Farré, M.</creatorcontrib><creatorcontrib>Dahl, A.</creatorcontrib><creatorcontrib>Brandl, H.</creatorcontrib><creatorcontrib>Lakshmanaperumal, N.</creatorcontrib><creatorcontrib>Henry, I.</creatorcontrib><creatorcontrib>Rink, J. C.</creatorcontrib><title>Reactivating head regrowth in a regeneration-deficient planarian species</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Although the capacity for tissue regeneration of planarians is exceptional, planarians with more limited regenerative capacities are known; here knocking down components of the Wnt signalling pathway rescues head regeneration in the regeneration-impaired planarian
Dendrocoelum lacteum
, revealing that manipulating a single signalling pathway can reverse the evolutionary loss of regenerative potential.
Controlling planarian regeneration capacity
Planarians are flatworms common in streams and ponds whose capacity for tissue regeneration is legendary. But with more limited regenerative capacities are known. Three papers published in
Nature
this week study
Planaria
with differing regenerative capacities and identify the Wnt/β-catenin molecular signalling pathway, important in embryonic development and adult homeostasis in multicellular organisms, as central to the regeneration mechanism. Yoshihiko Umesono
et al
. identify ERK and β-catenin signalling as the basis for a morphogenetic gradient along the anterior–posterior axis that is required for regeneration. These authors also demonstrate that inhibition of β-catenin can rescue head regeneration in
Phagocata kawakatsui
, a planarian that otherwise cannot regenerate heads from the posterior pieces. James Sikes and Phillip Newmark show in
Procotyla fluviatilis
, which has restricted ability to replace missing tissues, that Wnt signalling is aberrantly regulated in regeneration-deficient tissues. Downregulation of Wnt signalling in these regions restores regenerative abilities, including the formation of blastemas and even new heads. Jochen Rink and colleagues show that in the otherwise regeneration-incompetent
Dendrocoelum lacteum
, knockdown of components in the Wnt signalling pathway introduces the ability to regenerate lost tissues.
Species capable of regenerating lost body parts occur throughout the animal kingdom, yet close relatives are often regeneration incompetent
1
,
2
. Why in the face of ‘survival of the fittest’ some animals regenerate but others do not remains a fascinating question
3
. Planarian flatworms are well known and studied for their ability to regenerate from minute tissue pieces, yet species with limited regeneration abilities have been described even amongst planarians
4
. Here we report the characterization of the regeneration defect in the planarian
Dendrocoelum lacteum
and its successful rescue. Tissue fragments cut from the posterior half of the body of this species are unable to regenerate a head and ultimately die
5
. We find that this defect originates during the early stages of head specification, which require inhibition of canonical Wnt signalling in other planarian species
6
,
7
,
8
. Notably, RNA interference (RNAi)-mediated knockdown of
Dlac-β-catenin-1
, the Wnt signal transducer, restored the regeneration of fully functional heads on tail pieces, rescuing
D. lacteum
’s regeneration defect. Our results demonstrate the utility of comparative studies towards the reactivation of regenerative abilities in regeneration-deficient animals. Furthermore, the availability of
D. lacteum
as a regeneration-impaired planarian model species provides a first step towards elucidating the evolutionary mechanisms that ultimately determine why some animals regenerate and others do not.</description><subject>631/136</subject><subject>Amputation</subject><subject>Animals</subject><subject>beta Catenin - biosynthesis</subject><subject>beta Catenin - deficiency</subject><subject>beta Catenin - genetics</subject><subject>beta Catenin - metabolism</subject><subject>Body Patterning</subject><subject>Cloning</subject><subject>Comparative studies</subject><subject>Defects</subject><subject>Experiments</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Head - growth & development</subject><subject>Head - physiology</subject><subject>Histology</subject><subject>Humanities and Social Sciences</subject><subject>Hybridization</subject><subject>letter</subject><subject>Ligands</subject><subject>Models, Animal</subject><subject>Molecular Sequence Data</subject><subject>multidisciplinary</subject><subject>Physiological aspects</subject><subject>Planarians - anatomy & histology</subject><subject>Planarians - physiology</subject><subject>Platyhelminthes</subject><subject>Regeneration</subject><subject>Regeneration (Biology)</subject><subject>Regrowth</subject><subject>Science</subject><subject>Tail - growth & development</subject><subject>Wnt Proteins - metabolism</subject><subject>Wnt Signaling Pathway</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10s9rFDEUB_AgFrtWT95lsBdFpyaTzCRzXBZtC0WhLngMmeTNNGU2M00y_vjvzbKt3ZWRHEKSTx6PLw-hVwSfEUzFR6fi5IEUjLAnaEEYr3JWCf4ULTAuRI4FrY7R8xBuMcYl4ewZOi6oELSmxQJdXIPS0f5Q0bouuwFlMg-dH37Gm8y6TG1P4MCn98HlBlqrLbiYjb1yylvlsjBCugov0FGr-gAv7_cTtP78ab26yK--nl-ulle5rso65oo0hmPTcg0cc2ZoqyvCG8qEqpqmZBxMK6iphWJNYwir2qYojdIaWqFSyyfo7a7s6Ie7CUKUGxs09KkdGKYgCSO8LGpCWKKn_9DbYfIuNZcUJWVd0Io_qk71IK1rh-iV3haVS5piqhkpyqTyGbVLph9ciiVdH_g3M16P9k7uo7MZlJaBjdWzVd8dfEgmwq_YqSkEefnt-tC-_79drr-vvsxq7YcQPLRy9Haj_G9JsNxOmdybsqRf3yc7NRswf-3DWCXwYQdCenId-L3oZ-r9ARTl2Og</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Liu, S.-Y.</creator><creator>Selck, C.</creator><creator>Friedrich, B.</creator><creator>Lutz, R.</creator><creator>Vila-Farré, M.</creator><creator>Dahl, A.</creator><creator>Brandl, H.</creator><creator>Lakshmanaperumal, N.</creator><creator>Henry, I.</creator><creator>Rink, J. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Reactivating head regrowth in a regeneration-deficient planarian species</title><author>Liu, S.-Y. ; Selck, C. ; Friedrich, B. ; Lutz, R. ; Vila-Farré, M. ; Dahl, A. ; Brandl, H. ; Lakshmanaperumal, N. ; Henry, I. ; Rink, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c659t-a1bd70df7ce7074d3fc617b348a6bb547edf83d98a4bbd146fb25daccef8a393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/136</topic><topic>Amputation</topic><topic>Animals</topic><topic>beta Catenin - biosynthesis</topic><topic>beta Catenin - deficiency</topic><topic>beta Catenin - genetics</topic><topic>beta Catenin - metabolism</topic><topic>Body Patterning</topic><topic>Cloning</topic><topic>Comparative studies</topic><topic>Defects</topic><topic>Experiments</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Head - growth & development</topic><topic>Head - physiology</topic><topic>Histology</topic><topic>Humanities and Social Sciences</topic><topic>Hybridization</topic><topic>letter</topic><topic>Ligands</topic><topic>Models, Animal</topic><topic>Molecular Sequence Data</topic><topic>multidisciplinary</topic><topic>Physiological aspects</topic><topic>Planarians - anatomy & histology</topic><topic>Planarians - physiology</topic><topic>Platyhelminthes</topic><topic>Regeneration</topic><topic>Regeneration (Biology)</topic><topic>Regrowth</topic><topic>Science</topic><topic>Tail - growth & development</topic><topic>Wnt Proteins - metabolism</topic><topic>Wnt Signaling Pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, S.-Y.</creatorcontrib><creatorcontrib>Selck, C.</creatorcontrib><creatorcontrib>Friedrich, B.</creatorcontrib><creatorcontrib>Lutz, R.</creatorcontrib><creatorcontrib>Vila-Farré, M.</creatorcontrib><creatorcontrib>Dahl, A.</creatorcontrib><creatorcontrib>Brandl, H.</creatorcontrib><creatorcontrib>Lakshmanaperumal, N.</creatorcontrib><creatorcontrib>Henry, I.</creatorcontrib><creatorcontrib>Rink, J. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, S.-Y.</au><au>Selck, C.</au><au>Friedrich, B.</au><au>Lutz, R.</au><au>Vila-Farré, M.</au><au>Dahl, A.</au><au>Brandl, H.</au><au>Lakshmanaperumal, N.</au><au>Henry, I.</au><au>Rink, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactivating head regrowth in a regeneration-deficient planarian species</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>500</volume><issue>7460</issue><spage>81</spage><epage>84</epage><pages>81-84</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Although the capacity for tissue regeneration of planarians is exceptional, planarians with more limited regenerative capacities are known; here knocking down components of the Wnt signalling pathway rescues head regeneration in the regeneration-impaired planarian
Dendrocoelum lacteum
, revealing that manipulating a single signalling pathway can reverse the evolutionary loss of regenerative potential.
Controlling planarian regeneration capacity
Planarians are flatworms common in streams and ponds whose capacity for tissue regeneration is legendary. But with more limited regenerative capacities are known. Three papers published in
Nature
this week study
Planaria
with differing regenerative capacities and identify the Wnt/β-catenin molecular signalling pathway, important in embryonic development and adult homeostasis in multicellular organisms, as central to the regeneration mechanism. Yoshihiko Umesono
et al
. identify ERK and β-catenin signalling as the basis for a morphogenetic gradient along the anterior–posterior axis that is required for regeneration. These authors also demonstrate that inhibition of β-catenin can rescue head regeneration in
Phagocata kawakatsui
, a planarian that otherwise cannot regenerate heads from the posterior pieces. James Sikes and Phillip Newmark show in
Procotyla fluviatilis
, which has restricted ability to replace missing tissues, that Wnt signalling is aberrantly regulated in regeneration-deficient tissues. Downregulation of Wnt signalling in these regions restores regenerative abilities, including the formation of blastemas and even new heads. Jochen Rink and colleagues show that in the otherwise regeneration-incompetent
Dendrocoelum lacteum
, knockdown of components in the Wnt signalling pathway introduces the ability to regenerate lost tissues.
Species capable of regenerating lost body parts occur throughout the animal kingdom, yet close relatives are often regeneration incompetent
1
,
2
. Why in the face of ‘survival of the fittest’ some animals regenerate but others do not remains a fascinating question
3
. Planarian flatworms are well known and studied for their ability to regenerate from minute tissue pieces, yet species with limited regeneration abilities have been described even amongst planarians
4
. Here we report the characterization of the regeneration defect in the planarian
Dendrocoelum lacteum
and its successful rescue. Tissue fragments cut from the posterior half of the body of this species are unable to regenerate a head and ultimately die
5
. We find that this defect originates during the early stages of head specification, which require inhibition of canonical Wnt signalling in other planarian species
6
,
7
,
8
. Notably, RNA interference (RNAi)-mediated knockdown of
Dlac-β-catenin-1
, the Wnt signal transducer, restored the regeneration of fully functional heads on tail pieces, rescuing
D. lacteum
’s regeneration defect. Our results demonstrate the utility of comparative studies towards the reactivation of regenerative abilities in regeneration-deficient animals. Furthermore, the availability of
D. lacteum
as a regeneration-impaired planarian model species provides a first step towards elucidating the evolutionary mechanisms that ultimately determine why some animals regenerate and others do not.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23883932</pmid><doi>10.1038/nature12414</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2013-08, Vol.500 (7460), p.81-84 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_1417529114 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/136 Amputation Animals beta Catenin - biosynthesis beta Catenin - deficiency beta Catenin - genetics beta Catenin - metabolism Body Patterning Cloning Comparative studies Defects Experiments Genes Genetic engineering Head - growth & development Head - physiology Histology Humanities and Social Sciences Hybridization letter Ligands Models, Animal Molecular Sequence Data multidisciplinary Physiological aspects Planarians - anatomy & histology Planarians - physiology Platyhelminthes Regeneration Regeneration (Biology) Regrowth Science Tail - growth & development Wnt Proteins - metabolism Wnt Signaling Pathway |
title | Reactivating head regrowth in a regeneration-deficient planarian species |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactivating%20head%20regrowth%20in%20a%20regeneration-deficient%20planarian%20species&rft.jtitle=Nature%20(London)&rft.au=Liu,%20S.-Y.&rft.date=2013-08-01&rft.volume=500&rft.issue=7460&rft.spage=81&rft.epage=84&rft.pages=81-84&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature12414&rft_dat=%3Cgale_proqu%3EA338894125%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431592367&rft_id=info:pmid/23883932&rft_galeid=A338894125&rfr_iscdi=true |