Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities
The ability to produce small scale, crystalline silicon spheres is of significant technological and scientific importance, yet scalable methods for doing so have remained elusive. Here we demonstrate a silicon nanosphere fabrication process based on an optical fibre drawing technique. A silica-cladd...
Gespeichert in:
Veröffentlicht in: | Nature communications 2013, Vol.4 (1), p.2216-2216, Article 2216 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2216 |
---|---|
container_issue | 1 |
container_start_page | 2216 |
container_title | Nature communications |
container_volume | 4 |
creator | Gumennik, Alexander Wei, Lei Lestoquoy, Guillaume Stolyarov, Alexander M. Jia, Xiaoting Rekemeyer, Paul H. Smith, Matthew J. Liang, Xiangdong Grena, Benjamin J.-B. Johnson, Steven G. Gradečak, Silvija Abouraddy, Ayman F. Joannopoulos, John D. Fink, Yoel |
description | The ability to produce small scale, crystalline silicon spheres is of significant technological and scientific importance, yet scalable methods for doing so have remained elusive. Here we demonstrate a silicon nanosphere fabrication process based on an optical fibre drawing technique. A silica-cladded silicon-core fibre with diameters down to 340 nm is continuously fed into a flame defining an axial thermal gradient and the continuous formation of spheres whose size is controlled by the feed speed is demonstrated. In particular, spheres of diameter |
doi_str_mv | 10.1038/ncomms3216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1416695594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1416695594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-d4002e9cacdf954a1adb8987ef242d890c1b82391bf7a44cebd1857bbbeb6a433</originalsourceid><addsrcrecordid>eNplkEtLxDAUhYMojoyz8QdIwY0o1bzaJksZfMGAC511SdLbMUNfJq3ovzdlRh00m3tz83HuyUHohOArgpm4bkxb155Rku6hI4o5iUlG2f5OP0Ez79c4HCaJ4PwQTSiT400coeWzraxpm9g2sR9bFfnuFRz46N2qSH1YVUV9GNShrpwqLDR9FODSageRUZ2tKuU-w8j3SgeF3oI_RgelqjzMtnWKlne3L_OHePF0_zi_WcSGiayPC44xBWmUKUqZcEVUoYUUGZSU00JIbIgWwSvRZaY4N6ALIpJMaw06VZyxKTrf6HaufRvA93ltvYHgqIF28DnhJE1lkkge0LM_6LodXBPcjVSShr10pC42lHGt9w7KvHO2Dv_LCc7HvPPfvAN8upUcdA3FD_qdbgAuN4APT80K3M7O_3Jfi_SLcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1415689824</pqid></control><display><type>article</type><title>Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities</title><source>Springer Nature OA Free Journals</source><creator>Gumennik, Alexander ; Wei, Lei ; Lestoquoy, Guillaume ; Stolyarov, Alexander M. ; Jia, Xiaoting ; Rekemeyer, Paul H. ; Smith, Matthew J. ; Liang, Xiangdong ; Grena, Benjamin J.-B. ; Johnson, Steven G. ; Gradečak, Silvija ; Abouraddy, Ayman F. ; Joannopoulos, John D. ; Fink, Yoel</creator><creatorcontrib>Gumennik, Alexander ; Wei, Lei ; Lestoquoy, Guillaume ; Stolyarov, Alexander M. ; Jia, Xiaoting ; Rekemeyer, Paul H. ; Smith, Matthew J. ; Liang, Xiangdong ; Grena, Benjamin J.-B. ; Johnson, Steven G. ; Gradečak, Silvija ; Abouraddy, Ayman F. ; Joannopoulos, John D. ; Fink, Yoel</creatorcontrib><description>The ability to produce small scale, crystalline silicon spheres is of significant technological and scientific importance, yet scalable methods for doing so have remained elusive. Here we demonstrate a silicon nanosphere fabrication process based on an optical fibre drawing technique. A silica-cladded silicon-core fibre with diameters down to 340 nm is continuously fed into a flame defining an axial thermal gradient and the continuous formation of spheres whose size is controlled by the feed speed is demonstrated. In particular, spheres of diameter <500 nm smaller than those produced under isothermal heating conditions are shown and analysed. A fibre with dual cores,
p
-type and
n
-type silicon, is drawn and processed into spheres. Spatially coherent break-up leads to the joining of the spheres into a bispherical silicon ‘
p
–
n
molecule’. The resulting device is measured to reveal a rectifying I–V curve consistent with the formation of a
p
–
n
junction.
Silicon nanospheres could be of interest for applications in electronics and optoelectronics. Here, Gumennik
et al.
demonstrate a nanosphere fabrication process based on an optical fibre drawing technique that is able to produce
p
and
n
-type spheres paired into rectifying bispherical junctions.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms3216</identifier><identifier>PMID: 23900398</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/1099 ; 639/925/930/1032 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2013, Vol.4 (1), p.2216-2216, Article 2216</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Jul 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-d4002e9cacdf954a1adb8987ef242d890c1b82391bf7a44cebd1857bbbeb6a433</citedby><cites>FETCH-LOGICAL-c387t-d4002e9cacdf954a1adb8987ef242d890c1b82391bf7a44cebd1857bbbeb6a433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms3216$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms3216$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4022,27922,27923,27924,41119,42188,51575</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms3216$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23900398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gumennik, Alexander</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Lestoquoy, Guillaume</creatorcontrib><creatorcontrib>Stolyarov, Alexander M.</creatorcontrib><creatorcontrib>Jia, Xiaoting</creatorcontrib><creatorcontrib>Rekemeyer, Paul H.</creatorcontrib><creatorcontrib>Smith, Matthew J.</creatorcontrib><creatorcontrib>Liang, Xiangdong</creatorcontrib><creatorcontrib>Grena, Benjamin J.-B.</creatorcontrib><creatorcontrib>Johnson, Steven G.</creatorcontrib><creatorcontrib>Gradečak, Silvija</creatorcontrib><creatorcontrib>Abouraddy, Ayman F.</creatorcontrib><creatorcontrib>Joannopoulos, John D.</creatorcontrib><creatorcontrib>Fink, Yoel</creatorcontrib><title>Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The ability to produce small scale, crystalline silicon spheres is of significant technological and scientific importance, yet scalable methods for doing so have remained elusive. Here we demonstrate a silicon nanosphere fabrication process based on an optical fibre drawing technique. A silica-cladded silicon-core fibre with diameters down to 340 nm is continuously fed into a flame defining an axial thermal gradient and the continuous formation of spheres whose size is controlled by the feed speed is demonstrated. In particular, spheres of diameter <500 nm smaller than those produced under isothermal heating conditions are shown and analysed. A fibre with dual cores,
p
-type and
n
-type silicon, is drawn and processed into spheres. Spatially coherent break-up leads to the joining of the spheres into a bispherical silicon ‘
p
–
n
molecule’. The resulting device is measured to reveal a rectifying I–V curve consistent with the formation of a
p
–
n
junction.
Silicon nanospheres could be of interest for applications in electronics and optoelectronics. Here, Gumennik
et al.
demonstrate a nanosphere fabrication process based on an optical fibre drawing technique that is able to produce
p
and
n
-type spheres paired into rectifying bispherical junctions.</description><subject>639/624/399/1099</subject><subject>639/925/930/1032</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkEtLxDAUhYMojoyz8QdIwY0o1bzaJksZfMGAC511SdLbMUNfJq3ovzdlRh00m3tz83HuyUHohOArgpm4bkxb155Rku6hI4o5iUlG2f5OP0Ez79c4HCaJ4PwQTSiT400coeWzraxpm9g2sR9bFfnuFRz46N2qSH1YVUV9GNShrpwqLDR9FODSageRUZ2tKuU-w8j3SgeF3oI_RgelqjzMtnWKlne3L_OHePF0_zi_WcSGiayPC44xBWmUKUqZcEVUoYUUGZSU00JIbIgWwSvRZaY4N6ALIpJMaw06VZyxKTrf6HaufRvA93ltvYHgqIF28DnhJE1lkkge0LM_6LodXBPcjVSShr10pC42lHGt9w7KvHO2Dv_LCc7HvPPfvAN8upUcdA3FD_qdbgAuN4APT80K3M7O_3Jfi_SLcg</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Gumennik, Alexander</creator><creator>Wei, Lei</creator><creator>Lestoquoy, Guillaume</creator><creator>Stolyarov, Alexander M.</creator><creator>Jia, Xiaoting</creator><creator>Rekemeyer, Paul H.</creator><creator>Smith, Matthew J.</creator><creator>Liang, Xiangdong</creator><creator>Grena, Benjamin J.-B.</creator><creator>Johnson, Steven G.</creator><creator>Gradečak, Silvija</creator><creator>Abouraddy, Ayman F.</creator><creator>Joannopoulos, John D.</creator><creator>Fink, Yoel</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>2013</creationdate><title>Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities</title><author>Gumennik, Alexander ; Wei, Lei ; Lestoquoy, Guillaume ; Stolyarov, Alexander M. ; Jia, Xiaoting ; Rekemeyer, Paul H. ; Smith, Matthew J. ; Liang, Xiangdong ; Grena, Benjamin J.-B. ; Johnson, Steven G. ; Gradečak, Silvija ; Abouraddy, Ayman F. ; Joannopoulos, John D. ; Fink, Yoel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-d4002e9cacdf954a1adb8987ef242d890c1b82391bf7a44cebd1857bbbeb6a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/624/399/1099</topic><topic>639/925/930/1032</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gumennik, Alexander</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Lestoquoy, Guillaume</creatorcontrib><creatorcontrib>Stolyarov, Alexander M.</creatorcontrib><creatorcontrib>Jia, Xiaoting</creatorcontrib><creatorcontrib>Rekemeyer, Paul H.</creatorcontrib><creatorcontrib>Smith, Matthew J.</creatorcontrib><creatorcontrib>Liang, Xiangdong</creatorcontrib><creatorcontrib>Grena, Benjamin J.-B.</creatorcontrib><creatorcontrib>Johnson, Steven G.</creatorcontrib><creatorcontrib>Gradečak, Silvija</creatorcontrib><creatorcontrib>Abouraddy, Ayman F.</creatorcontrib><creatorcontrib>Joannopoulos, John D.</creatorcontrib><creatorcontrib>Fink, Yoel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gumennik, Alexander</au><au>Wei, Lei</au><au>Lestoquoy, Guillaume</au><au>Stolyarov, Alexander M.</au><au>Jia, Xiaoting</au><au>Rekemeyer, Paul H.</au><au>Smith, Matthew J.</au><au>Liang, Xiangdong</au><au>Grena, Benjamin J.-B.</au><au>Johnson, Steven G.</au><au>Gradečak, Silvija</au><au>Abouraddy, Ayman F.</au><au>Joannopoulos, John D.</au><au>Fink, Yoel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>2216</spage><epage>2216</epage><pages>2216-2216</pages><artnum>2216</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The ability to produce small scale, crystalline silicon spheres is of significant technological and scientific importance, yet scalable methods for doing so have remained elusive. Here we demonstrate a silicon nanosphere fabrication process based on an optical fibre drawing technique. A silica-cladded silicon-core fibre with diameters down to 340 nm is continuously fed into a flame defining an axial thermal gradient and the continuous formation of spheres whose size is controlled by the feed speed is demonstrated. In particular, spheres of diameter <500 nm smaller than those produced under isothermal heating conditions are shown and analysed. A fibre with dual cores,
p
-type and
n
-type silicon, is drawn and processed into spheres. Spatially coherent break-up leads to the joining of the spheres into a bispherical silicon ‘
p
–
n
molecule’. The resulting device is measured to reveal a rectifying I–V curve consistent with the formation of a
p
–
n
junction.
Silicon nanospheres could be of interest for applications in electronics and optoelectronics. Here, Gumennik
et al.
demonstrate a nanosphere fabrication process based on an optical fibre drawing technique that is able to produce
p
and
n
-type spheres paired into rectifying bispherical junctions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23900398</pmid><doi>10.1038/ncomms3216</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2013, Vol.4 (1), p.2216-2216, Article 2216 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1416695594 |
source | Springer Nature OA Free Journals |
subjects | 639/624/399/1099 639/925/930/1032 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon-in-silica%20spheres%20via%20axial%20thermal%20gradient%20in-fibre%20capillary%20instabilities&rft.jtitle=Nature%20communications&rft.au=Gumennik,%20Alexander&rft.date=2013&rft.volume=4&rft.issue=1&rft.spage=2216&rft.epage=2216&rft.pages=2216-2216&rft.artnum=2216&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms3216&rft_dat=%3Cproquest_C6C%3E1416695594%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1415689824&rft_id=info:pmid/23900398&rfr_iscdi=true |