Digital compressive chemical quantitation and hyperspectral imaging
Digital compressive detection, implemented using optimized binary (OB) filters, is shown to greatly increase the speed at which Raman spectroscopy can be used to quantify the composition of liquid mixtures and to chemically image mixed solid powders. We further demonstrate that OB filters can be pro...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2013-09, Vol.138 (17), p.4982-499 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 499 |
---|---|
container_issue | 17 |
container_start_page | 4982 |
container_title | Analyst (London) |
container_volume | 138 |
creator | Wilcox, David S Buzzard, Gregery T Lucier, Bradley J Rehrauer, Owen G Wang, Ping Ben-Amotz, Dor |
description | Digital compressive detection, implemented using optimized binary (OB) filters, is shown to greatly increase the speed at which Raman spectroscopy can be used to quantify the composition of liquid mixtures and to chemically image mixed solid powders. We further demonstrate that OB filters can be produced using multivariate curve resolution (MCR) to pre-process mixture training spectra, thus facilitating the quantitation of mixtures even when no pure chemical component samples are available for training.
Optimal binary compressive detection is used to rapidly quantify the composition of liquid mixtures and to chemically image mixed solid powders. |
doi_str_mv | 10.1039/c3an00309d |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1416045460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429850631</sourcerecordid><originalsourceid>FETCH-LOGICAL-p222t-7061c56972850d1ed9fe138fa19259452c444cb4e42fd7529bdf7ea872c17ab93</originalsourceid><addsrcrecordid>eNqNkMtLxDAYxIMo7rp68a7Um5dq3mmOUp-w4EXPJU3S3Ugf2aQV9r83sKvexNPHzPwY-AaAcwRvECTyVhPVQ0igNAdgjginOWO4OARzmNwcc0Zn4CTGjyQRZPAYzDApkMCCzkF571ZuVG2mh84HG6P7tJle287pZG4m1Y8pHt3QZ6o32XrrbYje6jGk2HVq5frVKThqVBvt2f4uwPvjw1v5nC9fn17Ku2XuMcZjLiBHmnEpcMGgQdbIxiJSNApJzCRlWFNKdU0txY0RDMvaNMKqQmCNhKolWYDrXa8Pw2aycaw6F7VtW9XbYYoVolimak7QP1DEIWWUw4Re7tGp7qypfEhvhW31vVECrnZAiPon_d288qZJzMVfDPkC3-R8ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1416045460</pqid></control><display><type>article</type><title>Digital compressive chemical quantitation and hyperspectral imaging</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wilcox, David S ; Buzzard, Gregery T ; Lucier, Bradley J ; Rehrauer, Owen G ; Wang, Ping ; Ben-Amotz, Dor</creator><creatorcontrib>Wilcox, David S ; Buzzard, Gregery T ; Lucier, Bradley J ; Rehrauer, Owen G ; Wang, Ping ; Ben-Amotz, Dor</creatorcontrib><description>Digital compressive detection, implemented using optimized binary (OB) filters, is shown to greatly increase the speed at which Raman spectroscopy can be used to quantify the composition of liquid mixtures and to chemically image mixed solid powders. We further demonstrate that OB filters can be produced using multivariate curve resolution (MCR) to pre-process mixture training spectra, thus facilitating the quantitation of mixtures even when no pure chemical component samples are available for training.
Optimal binary compressive detection is used to rapidly quantify the composition of liquid mixtures and to chemically image mixed solid powders.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/c3an00309d</identifier><identifier>PMID: 23817274</identifier><language>eng</language><publisher>England</publisher><subject>Digital ; Hyperspectral imaging ; Image detection ; Liquids ; Raman spectroscopy ; Spectra ; Training</subject><ispartof>Analyst (London), 2013-09, Vol.138 (17), p.4982-499</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2830,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23817274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilcox, David S</creatorcontrib><creatorcontrib>Buzzard, Gregery T</creatorcontrib><creatorcontrib>Lucier, Bradley J</creatorcontrib><creatorcontrib>Rehrauer, Owen G</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Ben-Amotz, Dor</creatorcontrib><title>Digital compressive chemical quantitation and hyperspectral imaging</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>Digital compressive detection, implemented using optimized binary (OB) filters, is shown to greatly increase the speed at which Raman spectroscopy can be used to quantify the composition of liquid mixtures and to chemically image mixed solid powders. We further demonstrate that OB filters can be produced using multivariate curve resolution (MCR) to pre-process mixture training spectra, thus facilitating the quantitation of mixtures even when no pure chemical component samples are available for training.
Optimal binary compressive detection is used to rapidly quantify the composition of liquid mixtures and to chemically image mixed solid powders.</description><subject>Digital</subject><subject>Hyperspectral imaging</subject><subject>Image detection</subject><subject>Liquids</subject><subject>Raman spectroscopy</subject><subject>Spectra</subject><subject>Training</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkMtLxDAYxIMo7rp68a7Um5dq3mmOUp-w4EXPJU3S3Ugf2aQV9r83sKvexNPHzPwY-AaAcwRvECTyVhPVQ0igNAdgjginOWO4OARzmNwcc0Zn4CTGjyQRZPAYzDApkMCCzkF571ZuVG2mh84HG6P7tJle287pZG4m1Y8pHt3QZ6o32XrrbYje6jGk2HVq5frVKThqVBvt2f4uwPvjw1v5nC9fn17Ku2XuMcZjLiBHmnEpcMGgQdbIxiJSNApJzCRlWFNKdU0txY0RDMvaNMKqQmCNhKolWYDrXa8Pw2aycaw6F7VtW9XbYYoVolimak7QP1DEIWWUw4Re7tGp7qypfEhvhW31vVECrnZAiPon_d288qZJzMVfDPkC3-R8ow</recordid><startdate>20130907</startdate><enddate>20130907</enddate><creator>Wilcox, David S</creator><creator>Buzzard, Gregery T</creator><creator>Lucier, Bradley J</creator><creator>Rehrauer, Owen G</creator><creator>Wang, Ping</creator><creator>Ben-Amotz, Dor</creator><scope>NPM</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130907</creationdate><title>Digital compressive chemical quantitation and hyperspectral imaging</title><author>Wilcox, David S ; Buzzard, Gregery T ; Lucier, Bradley J ; Rehrauer, Owen G ; Wang, Ping ; Ben-Amotz, Dor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p222t-7061c56972850d1ed9fe138fa19259452c444cb4e42fd7529bdf7ea872c17ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Digital</topic><topic>Hyperspectral imaging</topic><topic>Image detection</topic><topic>Liquids</topic><topic>Raman spectroscopy</topic><topic>Spectra</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilcox, David S</creatorcontrib><creatorcontrib>Buzzard, Gregery T</creatorcontrib><creatorcontrib>Lucier, Bradley J</creatorcontrib><creatorcontrib>Rehrauer, Owen G</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Ben-Amotz, Dor</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilcox, David S</au><au>Buzzard, Gregery T</au><au>Lucier, Bradley J</au><au>Rehrauer, Owen G</au><au>Wang, Ping</au><au>Ben-Amotz, Dor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital compressive chemical quantitation and hyperspectral imaging</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2013-09-07</date><risdate>2013</risdate><volume>138</volume><issue>17</issue><spage>4982</spage><epage>499</epage><pages>4982-499</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>Digital compressive detection, implemented using optimized binary (OB) filters, is shown to greatly increase the speed at which Raman spectroscopy can be used to quantify the composition of liquid mixtures and to chemically image mixed solid powders. We further demonstrate that OB filters can be produced using multivariate curve resolution (MCR) to pre-process mixture training spectra, thus facilitating the quantitation of mixtures even when no pure chemical component samples are available for training.
Optimal binary compressive detection is used to rapidly quantify the composition of liquid mixtures and to chemically image mixed solid powders.</abstract><cop>England</cop><pmid>23817274</pmid><doi>10.1039/c3an00309d</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2654 |
ispartof | Analyst (London), 2013-09, Vol.138 (17), p.4982-499 |
issn | 0003-2654 1364-5528 |
language | eng |
recordid | cdi_proquest_miscellaneous_1416045460 |
source | Royal Society of Chemistry Journals Archive (1841-2007); Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Digital Hyperspectral imaging Image detection Liquids Raman spectroscopy Spectra Training |
title | Digital compressive chemical quantitation and hyperspectral imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20compressive%20chemical%20quantitation%20and%20hyperspectral%20imaging&rft.jtitle=Analyst%20(London)&rft.au=Wilcox,%20David%20S&rft.date=2013-09-07&rft.volume=138&rft.issue=17&rft.spage=4982&rft.epage=499&rft.pages=4982-499&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/c3an00309d&rft_dat=%3Cproquest_pubme%3E1429850631%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1416045460&rft_id=info:pmid/23817274&rfr_iscdi=true |