Scalable reconstruction of density matrices
Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalab...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2013-07, Vol.111 (2), p.020401-020401, Article 020401 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 020401 |
---|---|
container_issue | 2 |
container_start_page | 020401 |
container_title | Physical review letters |
container_volume | 111 |
creator | Baumgratz, T Gross, D Cramer, M Plenio, M B |
description | Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalable method to reconstruct mixed states that are well approximated by matrix product operators. The reconstruction scheme only requires local information about the state, giving rise to a reconstruction technique that is scalable in the system size. It is based on a constructive proof that generic matrix product operators are fully determined by their local reductions. We discuss applications of this scheme for simulated data and experimental data obtained in an ion trap experiment. |
doi_str_mv | 10.1103/PhysRevLett.111.020401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1415608997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1415608997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-8505db2fcff3a3f15bcc3b150762d50f86a386e750c369b05d47c27022490db23</originalsourceid><addsrcrecordid>eNpNkNtKxDAURYMozjj6C0MfBel4TtI0zaOINxhQvDyHNE2w0suYpML8vZEZxacDm7X3gUXIEmGFCOzy6X0bnu3X2saYAlwBhQLwgMwRhMwFYnFI5gAMcwkgZuQkhA8AQFpWx2RGWVVJJnBOLl6M7nTd2cxbMw4h-snEdhyy0WWNHUIbt1mvo2-NDafkyOku2LP9XZC325vX6_t8_Xj3cH21zg0ri5hXHHhTU2ecY5o55LUxrEYOoqQNB1eVmlWlFRwSL-sEF8JQAZQWElKRLcj5bnfjx8_Jhqj6NhjbdXqw4xQUFshLqKQUCS13qPFjCN46tfFtr_1WIagfUeqfqBSg2olKxeX-x1T3tvmr_Zph37--ZhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1415608997</pqid></control><display><type>article</type><title>Scalable reconstruction of density matrices</title><source>American Physical Society Journals</source><creator>Baumgratz, T ; Gross, D ; Cramer, M ; Plenio, M B</creator><creatorcontrib>Baumgratz, T ; Gross, D ; Cramer, M ; Plenio, M B</creatorcontrib><description>Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalable method to reconstruct mixed states that are well approximated by matrix product operators. The reconstruction scheme only requires local information about the state, giving rise to a reconstruction technique that is scalable in the system size. It is based on a constructive proof that generic matrix product operators are fully determined by their local reductions. We discuss applications of this scheme for simulated data and experimental data obtained in an ion trap experiment.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.111.020401</identifier><identifier>PMID: 23889371</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2013-07, Vol.111 (2), p.020401-020401, Article 020401</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-8505db2fcff3a3f15bcc3b150762d50f86a386e750c369b05d47c27022490db23</citedby><cites>FETCH-LOGICAL-c364t-8505db2fcff3a3f15bcc3b150762d50f86a386e750c369b05d47c27022490db23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23889371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baumgratz, T</creatorcontrib><creatorcontrib>Gross, D</creatorcontrib><creatorcontrib>Cramer, M</creatorcontrib><creatorcontrib>Plenio, M B</creatorcontrib><title>Scalable reconstruction of density matrices</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalable method to reconstruct mixed states that are well approximated by matrix product operators. The reconstruction scheme only requires local information about the state, giving rise to a reconstruction technique that is scalable in the system size. It is based on a constructive proof that generic matrix product operators are fully determined by their local reductions. We discuss applications of this scheme for simulated data and experimental data obtained in an ion trap experiment.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKxDAURYMozjj6C0MfBel4TtI0zaOINxhQvDyHNE2w0suYpML8vZEZxacDm7X3gUXIEmGFCOzy6X0bnu3X2saYAlwBhQLwgMwRhMwFYnFI5gAMcwkgZuQkhA8AQFpWx2RGWVVJJnBOLl6M7nTd2cxbMw4h-snEdhyy0WWNHUIbt1mvo2-NDafkyOku2LP9XZC325vX6_t8_Xj3cH21zg0ri5hXHHhTU2ecY5o55LUxrEYOoqQNB1eVmlWlFRwSL-sEF8JQAZQWElKRLcj5bnfjx8_Jhqj6NhjbdXqw4xQUFshLqKQUCS13qPFjCN46tfFtr_1WIagfUeqfqBSg2olKxeX-x1T3tvmr_Zph37--ZhQ</recordid><startdate>20130712</startdate><enddate>20130712</enddate><creator>Baumgratz, T</creator><creator>Gross, D</creator><creator>Cramer, M</creator><creator>Plenio, M B</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130712</creationdate><title>Scalable reconstruction of density matrices</title><author>Baumgratz, T ; Gross, D ; Cramer, M ; Plenio, M B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-8505db2fcff3a3f15bcc3b150762d50f86a386e750c369b05d47c27022490db23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumgratz, T</creatorcontrib><creatorcontrib>Gross, D</creatorcontrib><creatorcontrib>Cramer, M</creatorcontrib><creatorcontrib>Plenio, M B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumgratz, T</au><au>Gross, D</au><au>Cramer, M</au><au>Plenio, M B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable reconstruction of density matrices</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2013-07-12</date><risdate>2013</risdate><volume>111</volume><issue>2</issue><spage>020401</spage><epage>020401</epage><pages>020401-020401</pages><artnum>020401</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalable method to reconstruct mixed states that are well approximated by matrix product operators. The reconstruction scheme only requires local information about the state, giving rise to a reconstruction technique that is scalable in the system size. It is based on a constructive proof that generic matrix product operators are fully determined by their local reductions. We discuss applications of this scheme for simulated data and experimental data obtained in an ion trap experiment.</abstract><cop>United States</cop><pmid>23889371</pmid><doi>10.1103/PhysRevLett.111.020401</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2013-07, Vol.111 (2), p.020401-020401, Article 020401 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1415608997 |
source | American Physical Society Journals |
title | Scalable reconstruction of density matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20reconstruction%20of%20density%20matrices&rft.jtitle=Physical%20review%20letters&rft.au=Baumgratz,%20T&rft.date=2013-07-12&rft.volume=111&rft.issue=2&rft.spage=020401&rft.epage=020401&rft.pages=020401-020401&rft.artnum=020401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.111.020401&rft_dat=%3Cproquest_cross%3E1415608997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1415608997&rft_id=info:pmid/23889371&rfr_iscdi=true |