Scalable reconstruction of density matrices

Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2013-07, Vol.111 (2), p.020401-020401, Article 020401
Hauptverfasser: Baumgratz, T, Gross, D, Cramer, M, Plenio, M B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 020401
container_issue 2
container_start_page 020401
container_title Physical review letters
container_volume 111
creator Baumgratz, T
Gross, D
Cramer, M
Plenio, M B
description Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalable method to reconstruct mixed states that are well approximated by matrix product operators. The reconstruction scheme only requires local information about the state, giving rise to a reconstruction technique that is scalable in the system size. It is based on a constructive proof that generic matrix product operators are fully determined by their local reductions. We discuss applications of this scheme for simulated data and experimental data obtained in an ion trap experiment.
doi_str_mv 10.1103/PhysRevLett.111.020401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1415608997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1415608997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-8505db2fcff3a3f15bcc3b150762d50f86a386e750c369b05d47c27022490db23</originalsourceid><addsrcrecordid>eNpNkNtKxDAURYMozjj6C0MfBel4TtI0zaOINxhQvDyHNE2w0suYpML8vZEZxacDm7X3gUXIEmGFCOzy6X0bnu3X2saYAlwBhQLwgMwRhMwFYnFI5gAMcwkgZuQkhA8AQFpWx2RGWVVJJnBOLl6M7nTd2cxbMw4h-snEdhyy0WWNHUIbt1mvo2-NDafkyOku2LP9XZC325vX6_t8_Xj3cH21zg0ri5hXHHhTU2ecY5o55LUxrEYOoqQNB1eVmlWlFRwSL-sEF8JQAZQWElKRLcj5bnfjx8_Jhqj6NhjbdXqw4xQUFshLqKQUCS13qPFjCN46tfFtr_1WIagfUeqfqBSg2olKxeX-x1T3tvmr_Zph37--ZhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1415608997</pqid></control><display><type>article</type><title>Scalable reconstruction of density matrices</title><source>American Physical Society Journals</source><creator>Baumgratz, T ; Gross, D ; Cramer, M ; Plenio, M B</creator><creatorcontrib>Baumgratz, T ; Gross, D ; Cramer, M ; Plenio, M B</creatorcontrib><description>Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalable method to reconstruct mixed states that are well approximated by matrix product operators. The reconstruction scheme only requires local information about the state, giving rise to a reconstruction technique that is scalable in the system size. It is based on a constructive proof that generic matrix product operators are fully determined by their local reductions. We discuss applications of this scheme for simulated data and experimental data obtained in an ion trap experiment.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.111.020401</identifier><identifier>PMID: 23889371</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2013-07, Vol.111 (2), p.020401-020401, Article 020401</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-8505db2fcff3a3f15bcc3b150762d50f86a386e750c369b05d47c27022490db23</citedby><cites>FETCH-LOGICAL-c364t-8505db2fcff3a3f15bcc3b150762d50f86a386e750c369b05d47c27022490db23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23889371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baumgratz, T</creatorcontrib><creatorcontrib>Gross, D</creatorcontrib><creatorcontrib>Cramer, M</creatorcontrib><creatorcontrib>Plenio, M B</creatorcontrib><title>Scalable reconstruction of density matrices</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalable method to reconstruct mixed states that are well approximated by matrix product operators. The reconstruction scheme only requires local information about the state, giving rise to a reconstruction technique that is scalable in the system size. It is based on a constructive proof that generic matrix product operators are fully determined by their local reductions. We discuss applications of this scheme for simulated data and experimental data obtained in an ion trap experiment.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKxDAURYMozjj6C0MfBel4TtI0zaOINxhQvDyHNE2w0suYpML8vZEZxacDm7X3gUXIEmGFCOzy6X0bnu3X2saYAlwBhQLwgMwRhMwFYnFI5gAMcwkgZuQkhA8AQFpWx2RGWVVJJnBOLl6M7nTd2cxbMw4h-snEdhyy0WWNHUIbt1mvo2-NDafkyOku2LP9XZC325vX6_t8_Xj3cH21zg0ri5hXHHhTU2ecY5o55LUxrEYOoqQNB1eVmlWlFRwSL-sEF8JQAZQWElKRLcj5bnfjx8_Jhqj6NhjbdXqw4xQUFshLqKQUCS13qPFjCN46tfFtr_1WIagfUeqfqBSg2olKxeX-x1T3tvmr_Zph37--ZhQ</recordid><startdate>20130712</startdate><enddate>20130712</enddate><creator>Baumgratz, T</creator><creator>Gross, D</creator><creator>Cramer, M</creator><creator>Plenio, M B</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130712</creationdate><title>Scalable reconstruction of density matrices</title><author>Baumgratz, T ; Gross, D ; Cramer, M ; Plenio, M B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-8505db2fcff3a3f15bcc3b150762d50f86a386e750c369b05d47c27022490db23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumgratz, T</creatorcontrib><creatorcontrib>Gross, D</creatorcontrib><creatorcontrib>Cramer, M</creatorcontrib><creatorcontrib>Plenio, M B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumgratz, T</au><au>Gross, D</au><au>Cramer, M</au><au>Plenio, M B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable reconstruction of density matrices</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2013-07-12</date><risdate>2013</risdate><volume>111</volume><issue>2</issue><spage>020401</spage><epage>020401</epage><pages>020401-020401</pages><artnum>020401</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalable method to reconstruct mixed states that are well approximated by matrix product operators. The reconstruction scheme only requires local information about the state, giving rise to a reconstruction technique that is scalable in the system size. It is based on a constructive proof that generic matrix product operators are fully determined by their local reductions. We discuss applications of this scheme for simulated data and experimental data obtained in an ion trap experiment.</abstract><cop>United States</cop><pmid>23889371</pmid><doi>10.1103/PhysRevLett.111.020401</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2013-07, Vol.111 (2), p.020401-020401, Article 020401
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1415608997
source American Physical Society Journals
title Scalable reconstruction of density matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20reconstruction%20of%20density%20matrices&rft.jtitle=Physical%20review%20letters&rft.au=Baumgratz,%20T&rft.date=2013-07-12&rft.volume=111&rft.issue=2&rft.spage=020401&rft.epage=020401&rft.pages=020401-020401&rft.artnum=020401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.111.020401&rft_dat=%3Cproquest_cross%3E1415608997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1415608997&rft_id=info:pmid/23889371&rfr_iscdi=true