Tailoring Copper Oxide Semiconductor Nanorod Arrays for Photoelectrochemical Reduction of Carbon Dioxide to Methanol

Solar photoelectrochemical reduction of carbon dioxide to methanol in aqueous media was driven on hybrid CuO/Cu2O semiconductor nanorod arrays for the first time. A two‐step synthesis was designed and demonstrated for the preparation of these hybrid copper oxide one‐dimensional nanostructures on cop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2013-07, Vol.14 (10), p.2251-2259
Hauptverfasser: Rajeshwar, Krishnan, de Tacconi, Norma R., Ghadimkhani, Ghazaleh, Chanmanee, Wilaiwan, Janáky, Csaba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2259
container_issue 10
container_start_page 2251
container_title Chemphyschem
container_volume 14
creator Rajeshwar, Krishnan
de Tacconi, Norma R.
Ghadimkhani, Ghazaleh
Chanmanee, Wilaiwan
Janáky, Csaba
description Solar photoelectrochemical reduction of carbon dioxide to methanol in aqueous media was driven on hybrid CuO/Cu2O semiconductor nanorod arrays for the first time. A two‐step synthesis was designed and demonstrated for the preparation of these hybrid copper oxide one‐dimensional nanostructures on copper substrates. The first step consisted in the growth of CuO nanorods by thermal oxidation of a copper foil at 400 °C. In the second step, controlled electrodeposition of p‐type Cu2O crystallites on the CuO walls was performed. The resulting nanorod morphology with controllable wall thickness by adjusting the Cu2O electrodeposition time as well as their surface/bulk chemical composition were probed by scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. Photoelectrosynthesis of methanol from carbon dioxide was demonstrated at −0.2 V vs SHE under simulated AM1.5 solar irradiation on optimized hybrid CuO/Cu2O nanorod electrodes and without assistance of any homogeneous catalyst (such as pyridine or imidazole) in the electrolyte. The hybrid composition, ensuring double pathway for photoelectron injection to CO2, along with high surface area were found to be crucial for efficient performance in methanol generation under solar illumination. Methanol formation, tracked by gas chromatography/mass spectrometry, indicated Faradaic efficiencies of ∼95 %. CO2 reduction: CuO/Cu2O hybrid nanorod arrays are prepared on a Cu substrate by a two‐step strategy. Photoelectrosynthesis of methanol from CO2 is conducted under simulated solar irradiation at Faradaic efficiencies up to 95 %. The hybrid nanoarchitectures and the high surface area are likely contributors to the excellent performance of the film.
doi_str_mv 10.1002/cphc.201300080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1415608352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1415608352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5440-31734da5ce80c35ea847a1f893e531bae2f165308c42a7e5c1f6bccf7b557a233</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEog_YskSWEFI3GfyMk2UV2hmkdlpKERIby3GuGZdMnNqJ6Px7ks50QGxY-cr6zrmPkyRvCJ4RjOkH063MjGLCMMY5fpYcEs6KVGacPN_VnDJxkBzFePeISPIyOaBMEppLeZj0t9o1Prj2Byp910FAVw-uBvQF1s74th5M7wNa6tYHX6PTEPQmIjt-Xa9876EB0wdvVhOtG3QDk8D5FnmLSh2qsfro_KNj79El9KvRqXmVvLC6ifB69x4nX8_PbstFenE1_1SeXqRGcI5TRiTjtRYGcmyYAJ1zqYnNCwaCkUoDtSQTDOeGUy1BGGKzyhgrKyGkpowdJydb3y74-wFir9YuGmga3YIfoiKciAznTNARffcPeueH0I7TTRRlhGaiGKnZljLBxxjAqi64tQ4bRbCa8lBTHmqfxyh4u7MdqjXUe_wpgBF4vwN0HC9og26Ni384KbKCymmVYsv9cg1s_tNWldeL8u8h0q3WxR4e9lodfqpMMinUt-Vczc_z74vlTaE-s999_bOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412312659</pqid></control><display><type>article</type><title>Tailoring Copper Oxide Semiconductor Nanorod Arrays for Photoelectrochemical Reduction of Carbon Dioxide to Methanol</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Rajeshwar, Krishnan ; de Tacconi, Norma R. ; Ghadimkhani, Ghazaleh ; Chanmanee, Wilaiwan ; Janáky, Csaba</creator><creatorcontrib>Rajeshwar, Krishnan ; de Tacconi, Norma R. ; Ghadimkhani, Ghazaleh ; Chanmanee, Wilaiwan ; Janáky, Csaba</creatorcontrib><description>Solar photoelectrochemical reduction of carbon dioxide to methanol in aqueous media was driven on hybrid CuO/Cu2O semiconductor nanorod arrays for the first time. A two‐step synthesis was designed and demonstrated for the preparation of these hybrid copper oxide one‐dimensional nanostructures on copper substrates. The first step consisted in the growth of CuO nanorods by thermal oxidation of a copper foil at 400 °C. In the second step, controlled electrodeposition of p‐type Cu2O crystallites on the CuO walls was performed. The resulting nanorod morphology with controllable wall thickness by adjusting the Cu2O electrodeposition time as well as their surface/bulk chemical composition were probed by scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. Photoelectrosynthesis of methanol from carbon dioxide was demonstrated at −0.2 V vs SHE under simulated AM1.5 solar irradiation on optimized hybrid CuO/Cu2O nanorod electrodes and without assistance of any homogeneous catalyst (such as pyridine or imidazole) in the electrolyte. The hybrid composition, ensuring double pathway for photoelectron injection to CO2, along with high surface area were found to be crucial for efficient performance in methanol generation under solar illumination. Methanol formation, tracked by gas chromatography/mass spectrometry, indicated Faradaic efficiencies of ∼95 %. CO2 reduction: CuO/Cu2O hybrid nanorod arrays are prepared on a Cu substrate by a two‐step strategy. Photoelectrosynthesis of methanol from CO2 is conducted under simulated solar irradiation at Faradaic efficiencies up to 95 %. The hybrid nanoarchitectures and the high surface area are likely contributors to the excellent performance of the film.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201300080</identifier><identifier>PMID: 23712877</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Carbon Dioxide - chemistry ; carbon dioxide remediation ; Chemistry ; Copper - chemistry ; Electrochemical Techniques ; Electrochemistry ; Electrodeposition ; Exact sciences and technology ; General and physical chemistry ; methanol ; Methanol - chemical synthesis ; Methanol - chemistry ; Nanotubes - chemistry ; Oxidation-Reduction ; Photochemical Processes ; photoelectrochemistry ; Photoelectrochemistry. Electrochemiluminescence ; Semiconductors ; Study of interfaces</subject><ispartof>Chemphyschem, 2013-07, Vol.14 (10), p.2251-2259</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5440-31734da5ce80c35ea847a1f893e531bae2f165308c42a7e5c1f6bccf7b557a233</citedby><cites>FETCH-LOGICAL-c5440-31734da5ce80c35ea847a1f893e531bae2f165308c42a7e5c1f6bccf7b557a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201300080$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201300080$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27569273$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23712877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajeshwar, Krishnan</creatorcontrib><creatorcontrib>de Tacconi, Norma R.</creatorcontrib><creatorcontrib>Ghadimkhani, Ghazaleh</creatorcontrib><creatorcontrib>Chanmanee, Wilaiwan</creatorcontrib><creatorcontrib>Janáky, Csaba</creatorcontrib><title>Tailoring Copper Oxide Semiconductor Nanorod Arrays for Photoelectrochemical Reduction of Carbon Dioxide to Methanol</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>Solar photoelectrochemical reduction of carbon dioxide to methanol in aqueous media was driven on hybrid CuO/Cu2O semiconductor nanorod arrays for the first time. A two‐step synthesis was designed and demonstrated for the preparation of these hybrid copper oxide one‐dimensional nanostructures on copper substrates. The first step consisted in the growth of CuO nanorods by thermal oxidation of a copper foil at 400 °C. In the second step, controlled electrodeposition of p‐type Cu2O crystallites on the CuO walls was performed. The resulting nanorod morphology with controllable wall thickness by adjusting the Cu2O electrodeposition time as well as their surface/bulk chemical composition were probed by scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. Photoelectrosynthesis of methanol from carbon dioxide was demonstrated at −0.2 V vs SHE under simulated AM1.5 solar irradiation on optimized hybrid CuO/Cu2O nanorod electrodes and without assistance of any homogeneous catalyst (such as pyridine or imidazole) in the electrolyte. The hybrid composition, ensuring double pathway for photoelectron injection to CO2, along with high surface area were found to be crucial for efficient performance in methanol generation under solar illumination. Methanol formation, tracked by gas chromatography/mass spectrometry, indicated Faradaic efficiencies of ∼95 %. CO2 reduction: CuO/Cu2O hybrid nanorod arrays are prepared on a Cu substrate by a two‐step strategy. Photoelectrosynthesis of methanol from CO2 is conducted under simulated solar irradiation at Faradaic efficiencies up to 95 %. The hybrid nanoarchitectures and the high surface area are likely contributors to the excellent performance of the film.</description><subject>Carbon Dioxide - chemistry</subject><subject>carbon dioxide remediation</subject><subject>Chemistry</subject><subject>Copper - chemistry</subject><subject>Electrochemical Techniques</subject><subject>Electrochemistry</subject><subject>Electrodeposition</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>methanol</subject><subject>Methanol - chemical synthesis</subject><subject>Methanol - chemistry</subject><subject>Nanotubes - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Photochemical Processes</subject><subject>photoelectrochemistry</subject><subject>Photoelectrochemistry. Electrochemiluminescence</subject><subject>Semiconductors</subject><subject>Study of interfaces</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhSMEog_YskSWEFI3GfyMk2UV2hmkdlpKERIby3GuGZdMnNqJ6Px7ks50QGxY-cr6zrmPkyRvCJ4RjOkH063MjGLCMMY5fpYcEs6KVGacPN_VnDJxkBzFePeISPIyOaBMEppLeZj0t9o1Prj2Byp910FAVw-uBvQF1s74th5M7wNa6tYHX6PTEPQmIjt-Xa9876EB0wdvVhOtG3QDk8D5FnmLSh2qsfro_KNj79El9KvRqXmVvLC6ifB69x4nX8_PbstFenE1_1SeXqRGcI5TRiTjtRYGcmyYAJ1zqYnNCwaCkUoDtSQTDOeGUy1BGGKzyhgrKyGkpowdJydb3y74-wFir9YuGmga3YIfoiKciAznTNARffcPeueH0I7TTRRlhGaiGKnZljLBxxjAqi64tQ4bRbCa8lBTHmqfxyh4u7MdqjXUe_wpgBF4vwN0HC9og26Ni384KbKCymmVYsv9cg1s_tNWldeL8u8h0q3WxR4e9lodfqpMMinUt-Vczc_z74vlTaE-s999_bOY</recordid><startdate>20130722</startdate><enddate>20130722</enddate><creator>Rajeshwar, Krishnan</creator><creator>de Tacconi, Norma R.</creator><creator>Ghadimkhani, Ghazaleh</creator><creator>Chanmanee, Wilaiwan</creator><creator>Janáky, Csaba</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20130722</creationdate><title>Tailoring Copper Oxide Semiconductor Nanorod Arrays for Photoelectrochemical Reduction of Carbon Dioxide to Methanol</title><author>Rajeshwar, Krishnan ; de Tacconi, Norma R. ; Ghadimkhani, Ghazaleh ; Chanmanee, Wilaiwan ; Janáky, Csaba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5440-31734da5ce80c35ea847a1f893e531bae2f165308c42a7e5c1f6bccf7b557a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Carbon Dioxide - chemistry</topic><topic>carbon dioxide remediation</topic><topic>Chemistry</topic><topic>Copper - chemistry</topic><topic>Electrochemical Techniques</topic><topic>Electrochemistry</topic><topic>Electrodeposition</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>methanol</topic><topic>Methanol - chemical synthesis</topic><topic>Methanol - chemistry</topic><topic>Nanotubes - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Photochemical Processes</topic><topic>photoelectrochemistry</topic><topic>Photoelectrochemistry. Electrochemiluminescence</topic><topic>Semiconductors</topic><topic>Study of interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajeshwar, Krishnan</creatorcontrib><creatorcontrib>de Tacconi, Norma R.</creatorcontrib><creatorcontrib>Ghadimkhani, Ghazaleh</creatorcontrib><creatorcontrib>Chanmanee, Wilaiwan</creatorcontrib><creatorcontrib>Janáky, Csaba</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajeshwar, Krishnan</au><au>de Tacconi, Norma R.</au><au>Ghadimkhani, Ghazaleh</au><au>Chanmanee, Wilaiwan</au><au>Janáky, Csaba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Copper Oxide Semiconductor Nanorod Arrays for Photoelectrochemical Reduction of Carbon Dioxide to Methanol</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2013-07-22</date><risdate>2013</risdate><volume>14</volume><issue>10</issue><spage>2251</spage><epage>2259</epage><pages>2251-2259</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Solar photoelectrochemical reduction of carbon dioxide to methanol in aqueous media was driven on hybrid CuO/Cu2O semiconductor nanorod arrays for the first time. A two‐step synthesis was designed and demonstrated for the preparation of these hybrid copper oxide one‐dimensional nanostructures on copper substrates. The first step consisted in the growth of CuO nanorods by thermal oxidation of a copper foil at 400 °C. In the second step, controlled electrodeposition of p‐type Cu2O crystallites on the CuO walls was performed. The resulting nanorod morphology with controllable wall thickness by adjusting the Cu2O electrodeposition time as well as their surface/bulk chemical composition were probed by scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. Photoelectrosynthesis of methanol from carbon dioxide was demonstrated at −0.2 V vs SHE under simulated AM1.5 solar irradiation on optimized hybrid CuO/Cu2O nanorod electrodes and without assistance of any homogeneous catalyst (such as pyridine or imidazole) in the electrolyte. The hybrid composition, ensuring double pathway for photoelectron injection to CO2, along with high surface area were found to be crucial for efficient performance in methanol generation under solar illumination. Methanol formation, tracked by gas chromatography/mass spectrometry, indicated Faradaic efficiencies of ∼95 %. CO2 reduction: CuO/Cu2O hybrid nanorod arrays are prepared on a Cu substrate by a two‐step strategy. Photoelectrosynthesis of methanol from CO2 is conducted under simulated solar irradiation at Faradaic efficiencies up to 95 %. The hybrid nanoarchitectures and the high surface area are likely contributors to the excellent performance of the film.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23712877</pmid><doi>10.1002/cphc.201300080</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2013-07, Vol.14 (10), p.2251-2259
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_1415608352
source MEDLINE; Wiley Online Library All Journals
subjects Carbon Dioxide - chemistry
carbon dioxide remediation
Chemistry
Copper - chemistry
Electrochemical Techniques
Electrochemistry
Electrodeposition
Exact sciences and technology
General and physical chemistry
methanol
Methanol - chemical synthesis
Methanol - chemistry
Nanotubes - chemistry
Oxidation-Reduction
Photochemical Processes
photoelectrochemistry
Photoelectrochemistry. Electrochemiluminescence
Semiconductors
Study of interfaces
title Tailoring Copper Oxide Semiconductor Nanorod Arrays for Photoelectrochemical Reduction of Carbon Dioxide to Methanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Copper%20Oxide%20Semiconductor%20Nanorod%20Arrays%20for%20Photoelectrochemical%20Reduction%20of%20Carbon%20Dioxide%20to%20Methanol&rft.jtitle=Chemphyschem&rft.au=Rajeshwar,%20Krishnan&rft.date=2013-07-22&rft.volume=14&rft.issue=10&rft.spage=2251&rft.epage=2259&rft.pages=2251-2259&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201300080&rft_dat=%3Cproquest_cross%3E1415608352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412312659&rft_id=info:pmid/23712877&rfr_iscdi=true