Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models
The Gibbs free energy of solvation and dissociation of hydrogen chloride in water is calculated through a combined molecular simulation/quantum chemical approach at four temperatures between T = 300 and 450 K. The Gibbs free energy is first decomposed into the sum of two components: the Gibbs free e...
Gespeichert in:
Veröffentlicht in: | Physical Chemistry Chemical Physics. PCCP, 15(32):13578-13585 15(32):13578-13585, 2013-08, Vol.15 (32), p.13578-13585 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13585 |
---|---|
container_issue | 32 |
container_start_page | 13578 |
container_title | Physical Chemistry Chemical Physics. PCCP, 15(32):13578-13585 |
container_volume | 15 |
creator | McGrath, Matthew J Kuo, I-F. Will Ngouana, Brice F Ghogomu, Julius N Mundy, Christopher J Marenich, Aleksandr V Cramer, Christopher J Truhlar, Donald G Siepmann, J. Ilja |
description | The Gibbs free energy of solvation and dissociation of hydrogen chloride in water is calculated through a combined molecular simulation/quantum chemical approach at four temperatures between
T
= 300 and 450 K. The Gibbs free energy is first decomposed into the sum of two components: the Gibbs free energy of transfer of molecular HCl from the vapor to the aqueous liquid phase and the standard-state Gibbs free energy of acid dissociation of HCl in aqueous solution. The former quantity is calculated using Gibbs ensemble Monte Carlo simulations using either KohnSham density functional theory or a molecular mechanics force field to determine the system's potential energy. The latter Gibbs free energy contribution is computed using a continuum solvation model utilizing either experimental reference data or micro-solvated clusters. The predicted combined solvation and dissociation Gibbs free energies agree very well with available experimental data.
Molecular simulations and quantum chemical solvation calculations were used to calculate the Gibbs free energy of aqueous solvation and dissociation for HCl at
T
= 300 to 450 K. |
doi_str_mv | 10.1039/c3cp51762d |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1413163817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1413163817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-7f19bfd59979e6d17cb52f6274f80760e9c847205a498493ba86219e43b343d23</originalsourceid><addsrcrecordid>eNp9kUGP0zAQhSMEYpfChTvIICEhUMGOHcc-riLYIhVxgbPlODY1cuzgSYr2R_CfSUnJwoXTjPS-eTP2K4rHBL8hmMq3hpqhIjUvuzvFJWGcbiUW7O7a1_yieADwDWNMKkLvFxclFZRUgl0WPxsdzBT06FNEyaHxYNG1b1tALluLbLT5681JgBSOC6VjhzoPkIxfx3ZNQD6iH3q0GR29Rh9THC1qdA4Jge_PG-D3sJk1H6ep_8u0T50N8LC453QA--hcN8WX9-8-N7vt_tP1h-ZqvzVMsnFbOyJb11VS1tLyjtSmrUrHy5o5Mb8WW2kEq0tcaSYFk7TVgpdEWkZbymhX0k3xfPFNMHoFxo_WHOazojWjIliWfP65TfF6gQ46qCH7XucblbRXu6u98rEcqMJYVJJLeSQz_XKhh5y-TxZG1XswNgQdbZpAEUYo4VSQekZfLajJCSBbt7oTrE6JqttEZ_jp2Xdqe9ut6J8IZ-DFGdBgdHBZR-Phlqs5pUKcDnyycBnMqv6z6Nn_dDV0jv4CW3q9bw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1413163817</pqid></control><display><type>article</type><title>Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>McGrath, Matthew J ; Kuo, I-F. Will ; Ngouana, Brice F ; Ghogomu, Julius N ; Mundy, Christopher J ; Marenich, Aleksandr V ; Cramer, Christopher J ; Truhlar, Donald G ; Siepmann, J. Ilja</creator><creatorcontrib>McGrath, Matthew J ; Kuo, I-F. Will ; Ngouana, Brice F ; Ghogomu, Julius N ; Mundy, Christopher J ; Marenich, Aleksandr V ; Cramer, Christopher J ; Truhlar, Donald G ; Siepmann, J. Ilja ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>The Gibbs free energy of solvation and dissociation of hydrogen chloride in water is calculated through a combined molecular simulation/quantum chemical approach at four temperatures between
T
= 300 and 450 K. The Gibbs free energy is first decomposed into the sum of two components: the Gibbs free energy of transfer of molecular HCl from the vapor to the aqueous liquid phase and the standard-state Gibbs free energy of acid dissociation of HCl in aqueous solution. The former quantity is calculated using Gibbs ensemble Monte Carlo simulations using either KohnSham density functional theory or a molecular mechanics force field to determine the system's potential energy. The latter Gibbs free energy contribution is computed using a continuum solvation model utilizing either experimental reference data or micro-solvated clusters. The predicted combined solvation and dissociation Gibbs free energies agree very well with available experimental data.
Molecular simulations and quantum chemical solvation calculations were used to calculate the Gibbs free energy of aqueous solvation and dissociation for HCl at
T
= 300 to 450 K.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c3cp51762d</identifier><identifier>PMID: 23831584</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical Physics ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Hydrochloric Acid - chemistry ; Molecular Dynamics Simulation ; Monte Carlo Method ; Physics ; Quantum Theory ; Solubility ; Temperature ; Thermodynamics ; Water - chemistry</subject><ispartof>Physical Chemistry Chemical Physics. PCCP, 15(32):13578-13585, 2013-08, Vol.15 (32), p.13578-13585</ispartof><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-7f19bfd59979e6d17cb52f6274f80760e9c847205a498493ba86219e43b343d23</citedby><cites>FETCH-LOGICAL-c494t-7f19bfd59979e6d17cb52f6274f80760e9c847205a498493ba86219e43b343d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27633881$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23831584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://in2p3.hal.science/in2p3-00859699$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1092646$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McGrath, Matthew J</creatorcontrib><creatorcontrib>Kuo, I-F. Will</creatorcontrib><creatorcontrib>Ngouana, Brice F</creatorcontrib><creatorcontrib>Ghogomu, Julius N</creatorcontrib><creatorcontrib>Mundy, Christopher J</creatorcontrib><creatorcontrib>Marenich, Aleksandr V</creatorcontrib><creatorcontrib>Cramer, Christopher J</creatorcontrib><creatorcontrib>Truhlar, Donald G</creatorcontrib><creatorcontrib>Siepmann, J. Ilja</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models</title><title>Physical Chemistry Chemical Physics. PCCP, 15(32):13578-13585</title><addtitle>Phys Chem Chem Phys</addtitle><description>The Gibbs free energy of solvation and dissociation of hydrogen chloride in water is calculated through a combined molecular simulation/quantum chemical approach at four temperatures between
T
= 300 and 450 K. The Gibbs free energy is first decomposed into the sum of two components: the Gibbs free energy of transfer of molecular HCl from the vapor to the aqueous liquid phase and the standard-state Gibbs free energy of acid dissociation of HCl in aqueous solution. The former quantity is calculated using Gibbs ensemble Monte Carlo simulations using either KohnSham density functional theory or a molecular mechanics force field to determine the system's potential energy. The latter Gibbs free energy contribution is computed using a continuum solvation model utilizing either experimental reference data or micro-solvated clusters. The predicted combined solvation and dissociation Gibbs free energies agree very well with available experimental data.
Molecular simulations and quantum chemical solvation calculations were used to calculate the Gibbs free energy of aqueous solvation and dissociation for HCl at
T
= 300 to 450 K.</description><subject>Chemical Physics</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrochloric Acid - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Monte Carlo Method</subject><subject>Physics</subject><subject>Quantum Theory</subject><subject>Solubility</subject><subject>Temperature</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUGP0zAQhSMEYpfChTvIICEhUMGOHcc-riLYIhVxgbPlODY1cuzgSYr2R_CfSUnJwoXTjPS-eTP2K4rHBL8hmMq3hpqhIjUvuzvFJWGcbiUW7O7a1_yieADwDWNMKkLvFxclFZRUgl0WPxsdzBT06FNEyaHxYNG1b1tALluLbLT5681JgBSOC6VjhzoPkIxfx3ZNQD6iH3q0GR29Rh9THC1qdA4Jge_PG-D3sJk1H6ep_8u0T50N8LC453QA--hcN8WX9-8-N7vt_tP1h-ZqvzVMsnFbOyJb11VS1tLyjtSmrUrHy5o5Mb8WW2kEq0tcaSYFk7TVgpdEWkZbymhX0k3xfPFNMHoFxo_WHOazojWjIliWfP65TfF6gQ46qCH7XucblbRXu6u98rEcqMJYVJJLeSQz_XKhh5y-TxZG1XswNgQdbZpAEUYo4VSQekZfLajJCSBbt7oTrE6JqttEZ_jp2Xdqe9ut6J8IZ-DFGdBgdHBZR-Phlqs5pUKcDnyycBnMqv6z6Nn_dDV0jv4CW3q9bw</recordid><startdate>20130828</startdate><enddate>20130828</enddate><creator>McGrath, Matthew J</creator><creator>Kuo, I-F. Will</creator><creator>Ngouana, Brice F</creator><creator>Ghogomu, Julius N</creator><creator>Mundy, Christopher J</creator><creator>Marenich, Aleksandr V</creator><creator>Cramer, Christopher J</creator><creator>Truhlar, Donald G</creator><creator>Siepmann, J. Ilja</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope></search><sort><creationdate>20130828</creationdate><title>Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models</title><author>McGrath, Matthew J ; Kuo, I-F. Will ; Ngouana, Brice F ; Ghogomu, Julius N ; Mundy, Christopher J ; Marenich, Aleksandr V ; Cramer, Christopher J ; Truhlar, Donald G ; Siepmann, J. Ilja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-7f19bfd59979e6d17cb52f6274f80760e9c847205a498493ba86219e43b343d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical Physics</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrochloric Acid - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Monte Carlo Method</topic><topic>Physics</topic><topic>Quantum Theory</topic><topic>Solubility</topic><topic>Temperature</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGrath, Matthew J</creatorcontrib><creatorcontrib>Kuo, I-F. Will</creatorcontrib><creatorcontrib>Ngouana, Brice F</creatorcontrib><creatorcontrib>Ghogomu, Julius N</creatorcontrib><creatorcontrib>Mundy, Christopher J</creatorcontrib><creatorcontrib>Marenich, Aleksandr V</creatorcontrib><creatorcontrib>Cramer, Christopher J</creatorcontrib><creatorcontrib>Truhlar, Donald G</creatorcontrib><creatorcontrib>Siepmann, J. Ilja</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Physical Chemistry Chemical Physics. PCCP, 15(32):13578-13585</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGrath, Matthew J</au><au>Kuo, I-F. Will</au><au>Ngouana, Brice F</au><au>Ghogomu, Julius N</au><au>Mundy, Christopher J</au><au>Marenich, Aleksandr V</au><au>Cramer, Christopher J</au><au>Truhlar, Donald G</au><au>Siepmann, J. Ilja</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models</atitle><jtitle>Physical Chemistry Chemical Physics. PCCP, 15(32):13578-13585</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2013-08-28</date><risdate>2013</risdate><volume>15</volume><issue>32</issue><spage>13578</spage><epage>13585</epage><pages>13578-13585</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The Gibbs free energy of solvation and dissociation of hydrogen chloride in water is calculated through a combined molecular simulation/quantum chemical approach at four temperatures between
T
= 300 and 450 K. The Gibbs free energy is first decomposed into the sum of two components: the Gibbs free energy of transfer of molecular HCl from the vapor to the aqueous liquid phase and the standard-state Gibbs free energy of acid dissociation of HCl in aqueous solution. The former quantity is calculated using Gibbs ensemble Monte Carlo simulations using either KohnSham density functional theory or a molecular mechanics force field to determine the system's potential energy. The latter Gibbs free energy contribution is computed using a continuum solvation model utilizing either experimental reference data or micro-solvated clusters. The predicted combined solvation and dissociation Gibbs free energies agree very well with available experimental data.
Molecular simulations and quantum chemical solvation calculations were used to calculate the Gibbs free energy of aqueous solvation and dissociation for HCl at
T
= 300 to 450 K.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>23831584</pmid><doi>10.1039/c3cp51762d</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical Chemistry Chemical Physics. PCCP, 15(32):13578-13585, 2013-08, Vol.15 (32), p.13578-13585 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1413163817 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chemical Physics Chemistry Exact sciences and technology General and physical chemistry Hydrochloric Acid - chemistry Molecular Dynamics Simulation Monte Carlo Method Physics Quantum Theory Solubility Temperature Thermodynamics Water - chemistry |
title | Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20the%20Gibbs%20free%20energy%20of%20solvation%20and%20dissociation%20of%20HCl%20in%20water%20via%20Monte%20Carlo%20simulations%20and%20continuum%20solvation%20models&rft.jtitle=Physical%20Chemistry%20Chemical%20Physics.%20PCCP,%2015(32):13578-13585&rft.au=McGrath,%20Matthew%20J&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2013-08-28&rft.volume=15&rft.issue=32&rft.spage=13578&rft.epage=13585&rft.pages=13578-13585&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c3cp51762d&rft_dat=%3Cproquest_osti_%3E1413163817%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1413163817&rft_id=info:pmid/23831584&rfr_iscdi=true |