Methyl Coenzyme M Reductase A (mcrA) Gene-Based Investigation of Methanogens in the Mudflat Sediments of Yangtze River Estuary, China
Methanogen populations of an intertidal mudflat in the Yangtze River estuary of China were investigated based on the methyl coenzyme M reductase A (mcrA) gene using 454-pyrosequencing and quantitative real-time polymerase chain reaction (qPCR). Samples were collected at six depths from three locatio...
Gespeichert in:
Veröffentlicht in: | Microbial ecology 2013-08, Vol.66 (2), p.257-267 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 267 |
---|---|
container_issue | 2 |
container_start_page | 257 |
container_title | Microbial ecology |
container_volume | 66 |
creator | Zeleke, Jemaneh Lu, Shui-Long Wang, Jian-Gong Huang, Jing-Xin Li, Bo Ogram, Andrew V. Quan, Zhe-Xue |
description | Methanogen populations of an intertidal mudflat in the Yangtze River estuary of China were investigated based on the methyl coenzyme M reductase A (mcrA) gene using 454-pyrosequencing and quantitative real-time polymerase chain reaction (qPCR). Samples were collected at six depths from three locations. In the qPCR analyses, a mean depth-wise change of mcrA gene abundance was observed from (1.23±0.13)×10 7 to (1.16±0.29)×10 8 per g dried soil, which was inversely correlated with the depletion of sulfate (R 2 =0.74; α=0.05) and salinity (R 2 =0.66; α=0.05). The copy numbers of mcrA was at least 1 order of magnitude higher than dissimilatory sulfate reductase B (dsrB) genes, likely indicating the importance of methanogenesis at the mudflat. Sequences related to the orders Methanomicrobiales, Methanosarcinales, Methanobacteriales, Methanococcales and the uncultured methanogens; Rice Cluster I (RC-I), Zoige cluster I (ZC-I) and anaerobic methane oxidizing archaeal lineage-1 (ANME-1) were detected. Methanomicrobiales and Methanosarcinales dominated the entire sediment layers, but detectable changes of proportions were observed with depth. The hydrogenotrophic methanogens Methanomicrobiales slightly increased with depth while Methanosarcinales showed the reverse. Chao1 and ACE richness estimators revealed higher diversity of methanogens near the surface (0—10 cm) when compared with the bottom sediments. The near-surface sediments were mainly dominated by the family Methanosarcinaceae (45 %), which has members that can utilize substrates that cannot be used by sulfate-reducing bacteria. Overall, current data indicate that Methanosarcinales and Methanomicrobiales are the most dominant methanogens within the entire depth profile down to 100 cm, with higher abundance and diversity of methanogens in the deeper and upper sediment layers, respectively. |
doi_str_mv | 10.1007/s00248-012-0155-2 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1412563201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23468241</jstor_id><sourcerecordid>23468241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-fe148c76691220ee683a14861a9fc114a9209ed40ae5eb79bb64a79b74b2b723</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotuFH8ABZAkhFYmAv-LEx2VVSqVWSKUHOFlOMtnNKrGL7VTa3vu_cZQFKg5wsEYaP_POx4vQC0reU0KKD4EQJsqMUJZenmfsEVpQwVlGS_HtMVoQovKMS1YeoeMQdoTQQjL-FB0xzonkii3Q_SXE7b7Hawf2bj8AvsRX0Ix1NAHwCp8MtV-9xWdgIfuYUg0-t7cQYrcxsXMWuxZPAsa6DdiAO4vjNmmMTdubiL9C0w1gY5i478Zu4h3gq-4WPD4NcTR-_w6vt501z9CT1vQBnh_iEl1_Or1ef84uvpydr1cXWS3yImYtUFHWhZSKMkYAZMlNykhqVFtTKoxiREEjiIEcqkJVlRQmhUJUrCoYX6KTWfbGux9jWkMPXaih740FNwZNBWW55IzQ_6NcqZwIlc64RK__Qndu9DbtMVGlKgVTU286U7V3IXho9Y3vhnQCTYme3NSzmzq5qSc39VTz6qA8VgM0vyt-2ZeANwfAhNr0rTe27sIfrsglVbJIHJu5kL7sBvyDEf_R_eVctAvR-QfNhSyZoPwnUiq-tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398984292</pqid></control><display><type>article</type><title>Methyl Coenzyme M Reductase A (mcrA) Gene-Based Investigation of Methanogens in the Mudflat Sediments of Yangtze River Estuary, China</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zeleke, Jemaneh ; Lu, Shui-Long ; Wang, Jian-Gong ; Huang, Jing-Xin ; Li, Bo ; Ogram, Andrew V. ; Quan, Zhe-Xue</creator><creatorcontrib>Zeleke, Jemaneh ; Lu, Shui-Long ; Wang, Jian-Gong ; Huang, Jing-Xin ; Li, Bo ; Ogram, Andrew V. ; Quan, Zhe-Xue</creatorcontrib><description>Methanogen populations of an intertidal mudflat in the Yangtze River estuary of China were investigated based on the methyl coenzyme M reductase A (mcrA) gene using 454-pyrosequencing and quantitative real-time polymerase chain reaction (qPCR). Samples were collected at six depths from three locations. In the qPCR analyses, a mean depth-wise change of mcrA gene abundance was observed from (1.23±0.13)×10 7 to (1.16±0.29)×10 8 per g dried soil, which was inversely correlated with the depletion of sulfate (R 2 =0.74; α=0.05) and salinity (R 2 =0.66; α=0.05). The copy numbers of mcrA was at least 1 order of magnitude higher than dissimilatory sulfate reductase B (dsrB) genes, likely indicating the importance of methanogenesis at the mudflat. Sequences related to the orders Methanomicrobiales, Methanosarcinales, Methanobacteriales, Methanococcales and the uncultured methanogens; Rice Cluster I (RC-I), Zoige cluster I (ZC-I) and anaerobic methane oxidizing archaeal lineage-1 (ANME-1) were detected. Methanomicrobiales and Methanosarcinales dominated the entire sediment layers, but detectable changes of proportions were observed with depth. The hydrogenotrophic methanogens Methanomicrobiales slightly increased with depth while Methanosarcinales showed the reverse. Chao1 and ACE richness estimators revealed higher diversity of methanogens near the surface (0—10 cm) when compared with the bottom sediments. The near-surface sediments were mainly dominated by the family Methanosarcinaceae (45 %), which has members that can utilize substrates that cannot be used by sulfate-reducing bacteria. Overall, current data indicate that Methanosarcinales and Methanomicrobiales are the most dominant methanogens within the entire depth profile down to 100 cm, with higher abundance and diversity of methanogens in the deeper and upper sediment layers, respectively.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-012-0155-2</identifier><identifier>PMID: 23306392</identifier><identifier>CODEN: MCBEBU</identifier><language>eng</language><publisher>Boston: Springer Science + Business Media</publisher><subject>Animal, plant and microbial ecology ; Bacteria ; Bacteria - classification ; Bacteria - enzymology ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological and medical sciences ; Biomedical and Life Sciences ; Bottom sediments ; Brackish ; China ; Ecology ; Ecosystem ; ENVIRONMENTAL MICROBIOLOGY ; Estuaries ; Fundamental and applied biological sciences. Psychology ; Geoecology/Natural Processes ; Geologic Sediments - microbiology ; Life Sciences ; Methane - metabolism ; Methane production ; Methanococcales ; Methanogenesis ; Methanogens ; Methanomicrobiales ; Methanosarcinaceae ; Methanosarcinales ; Microbial Ecology ; Microbiology ; Mud flats ; Nature Conservation ; Oryza sativa ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Phylogeny ; Polymerase chain reaction ; Rivers ; Rivers - microbiology ; Salinity ; Sedimentary soils ; Sediments ; Sulfate reduction ; Sulfates ; Various environments (extraatmospheric space, air, water) ; Water Quality/Water Pollution</subject><ispartof>Microbial ecology, 2013-08, Vol.66 (2), p.257-267</ispartof><rights>2013 Springer Science+Business Media</rights><rights>Springer Science+Business Media New York 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-fe148c76691220ee683a14861a9fc114a9209ed40ae5eb79bb64a79b74b2b723</citedby><cites>FETCH-LOGICAL-c457t-fe148c76691220ee683a14861a9fc114a9209ed40ae5eb79bb64a79b74b2b723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23468241$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23468241$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27923,27924,41487,42556,51318,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27561967$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23306392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeleke, Jemaneh</creatorcontrib><creatorcontrib>Lu, Shui-Long</creatorcontrib><creatorcontrib>Wang, Jian-Gong</creatorcontrib><creatorcontrib>Huang, Jing-Xin</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Ogram, Andrew V.</creatorcontrib><creatorcontrib>Quan, Zhe-Xue</creatorcontrib><title>Methyl Coenzyme M Reductase A (mcrA) Gene-Based Investigation of Methanogens in the Mudflat Sediments of Yangtze River Estuary, China</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><addtitle>Microb Ecol</addtitle><description>Methanogen populations of an intertidal mudflat in the Yangtze River estuary of China were investigated based on the methyl coenzyme M reductase A (mcrA) gene using 454-pyrosequencing and quantitative real-time polymerase chain reaction (qPCR). Samples were collected at six depths from three locations. In the qPCR analyses, a mean depth-wise change of mcrA gene abundance was observed from (1.23±0.13)×10 7 to (1.16±0.29)×10 8 per g dried soil, which was inversely correlated with the depletion of sulfate (R 2 =0.74; α=0.05) and salinity (R 2 =0.66; α=0.05). The copy numbers of mcrA was at least 1 order of magnitude higher than dissimilatory sulfate reductase B (dsrB) genes, likely indicating the importance of methanogenesis at the mudflat. Sequences related to the orders Methanomicrobiales, Methanosarcinales, Methanobacteriales, Methanococcales and the uncultured methanogens; Rice Cluster I (RC-I), Zoige cluster I (ZC-I) and anaerobic methane oxidizing archaeal lineage-1 (ANME-1) were detected. Methanomicrobiales and Methanosarcinales dominated the entire sediment layers, but detectable changes of proportions were observed with depth. The hydrogenotrophic methanogens Methanomicrobiales slightly increased with depth while Methanosarcinales showed the reverse. Chao1 and ACE richness estimators revealed higher diversity of methanogens near the surface (0—10 cm) when compared with the bottom sediments. The near-surface sediments were mainly dominated by the family Methanosarcinaceae (45 %), which has members that can utilize substrates that cannot be used by sulfate-reducing bacteria. Overall, current data indicate that Methanosarcinales and Methanomicrobiales are the most dominant methanogens within the entire depth profile down to 100 cm, with higher abundance and diversity of methanogens in the deeper and upper sediment layers, respectively.</description><subject>Animal, plant and microbial ecology</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Bottom sediments</subject><subject>Brackish</subject><subject>China</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>ENVIRONMENTAL MICROBIOLOGY</subject><subject>Estuaries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geoecology/Natural Processes</subject><subject>Geologic Sediments - microbiology</subject><subject>Life Sciences</subject><subject>Methane - metabolism</subject><subject>Methane production</subject><subject>Methanococcales</subject><subject>Methanogenesis</subject><subject>Methanogens</subject><subject>Methanomicrobiales</subject><subject>Methanosarcinaceae</subject><subject>Methanosarcinales</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Mud flats</subject><subject>Nature Conservation</subject><subject>Oryza sativa</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Phylogeny</subject><subject>Polymerase chain reaction</subject><subject>Rivers</subject><subject>Rivers - microbiology</subject><subject>Salinity</subject><subject>Sedimentary soils</subject><subject>Sediments</subject><subject>Sulfate reduction</subject><subject>Sulfates</subject><subject>Various environments (extraatmospheric space, air, water)</subject><subject>Water Quality/Water Pollution</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhi0EotuFH8ABZAkhFYmAv-LEx2VVSqVWSKUHOFlOMtnNKrGL7VTa3vu_cZQFKg5wsEYaP_POx4vQC0reU0KKD4EQJsqMUJZenmfsEVpQwVlGS_HtMVoQovKMS1YeoeMQdoTQQjL-FB0xzonkii3Q_SXE7b7Hawf2bj8AvsRX0Ix1NAHwCp8MtV-9xWdgIfuYUg0-t7cQYrcxsXMWuxZPAsa6DdiAO4vjNmmMTdubiL9C0w1gY5i478Zu4h3gq-4WPD4NcTR-_w6vt501z9CT1vQBnh_iEl1_Or1ef84uvpydr1cXWS3yImYtUFHWhZSKMkYAZMlNykhqVFtTKoxiREEjiIEcqkJVlRQmhUJUrCoYX6KTWfbGux9jWkMPXaih740FNwZNBWW55IzQ_6NcqZwIlc64RK__Qndu9DbtMVGlKgVTU286U7V3IXho9Y3vhnQCTYme3NSzmzq5qSc39VTz6qA8VgM0vyt-2ZeANwfAhNr0rTe27sIfrsglVbJIHJu5kL7sBvyDEf_R_eVctAvR-QfNhSyZoPwnUiq-tA</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Zeleke, Jemaneh</creator><creator>Lu, Shui-Long</creator><creator>Wang, Jian-Gong</creator><creator>Huang, Jing-Xin</creator><creator>Li, Bo</creator><creator>Ogram, Andrew V.</creator><creator>Quan, Zhe-Xue</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7TN</scope></search><sort><creationdate>20130801</creationdate><title>Methyl Coenzyme M Reductase A (mcrA) Gene-Based Investigation of Methanogens in the Mudflat Sediments of Yangtze River Estuary, China</title><author>Zeleke, Jemaneh ; Lu, Shui-Long ; Wang, Jian-Gong ; Huang, Jing-Xin ; Li, Bo ; Ogram, Andrew V. ; Quan, Zhe-Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-fe148c76691220ee683a14861a9fc114a9209ed40ae5eb79bb64a79b74b2b723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Bottom sediments</topic><topic>Brackish</topic><topic>China</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>ENVIRONMENTAL MICROBIOLOGY</topic><topic>Estuaries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geoecology/Natural Processes</topic><topic>Geologic Sediments - microbiology</topic><topic>Life Sciences</topic><topic>Methane - metabolism</topic><topic>Methane production</topic><topic>Methanococcales</topic><topic>Methanogenesis</topic><topic>Methanogens</topic><topic>Methanomicrobiales</topic><topic>Methanosarcinaceae</topic><topic>Methanosarcinales</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Mud flats</topic><topic>Nature Conservation</topic><topic>Oryza sativa</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Phylogeny</topic><topic>Polymerase chain reaction</topic><topic>Rivers</topic><topic>Rivers - microbiology</topic><topic>Salinity</topic><topic>Sedimentary soils</topic><topic>Sediments</topic><topic>Sulfate reduction</topic><topic>Sulfates</topic><topic>Various environments (extraatmospheric space, air, water)</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeleke, Jemaneh</creatorcontrib><creatorcontrib>Lu, Shui-Long</creatorcontrib><creatorcontrib>Wang, Jian-Gong</creatorcontrib><creatorcontrib>Huang, Jing-Xin</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Ogram, Andrew V.</creatorcontrib><creatorcontrib>Quan, Zhe-Xue</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeleke, Jemaneh</au><au>Lu, Shui-Long</au><au>Wang, Jian-Gong</au><au>Huang, Jing-Xin</au><au>Li, Bo</au><au>Ogram, Andrew V.</au><au>Quan, Zhe-Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methyl Coenzyme M Reductase A (mcrA) Gene-Based Investigation of Methanogens in the Mudflat Sediments of Yangtze River Estuary, China</atitle><jtitle>Microbial ecology</jtitle><stitle>Microb Ecol</stitle><addtitle>Microb Ecol</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>66</volume><issue>2</issue><spage>257</spage><epage>267</epage><pages>257-267</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><coden>MCBEBU</coden><abstract>Methanogen populations of an intertidal mudflat in the Yangtze River estuary of China were investigated based on the methyl coenzyme M reductase A (mcrA) gene using 454-pyrosequencing and quantitative real-time polymerase chain reaction (qPCR). Samples were collected at six depths from three locations. In the qPCR analyses, a mean depth-wise change of mcrA gene abundance was observed from (1.23±0.13)×10 7 to (1.16±0.29)×10 8 per g dried soil, which was inversely correlated with the depletion of sulfate (R 2 =0.74; α=0.05) and salinity (R 2 =0.66; α=0.05). The copy numbers of mcrA was at least 1 order of magnitude higher than dissimilatory sulfate reductase B (dsrB) genes, likely indicating the importance of methanogenesis at the mudflat. Sequences related to the orders Methanomicrobiales, Methanosarcinales, Methanobacteriales, Methanococcales and the uncultured methanogens; Rice Cluster I (RC-I), Zoige cluster I (ZC-I) and anaerobic methane oxidizing archaeal lineage-1 (ANME-1) were detected. Methanomicrobiales and Methanosarcinales dominated the entire sediment layers, but detectable changes of proportions were observed with depth. The hydrogenotrophic methanogens Methanomicrobiales slightly increased with depth while Methanosarcinales showed the reverse. Chao1 and ACE richness estimators revealed higher diversity of methanogens near the surface (0—10 cm) when compared with the bottom sediments. The near-surface sediments were mainly dominated by the family Methanosarcinaceae (45 %), which has members that can utilize substrates that cannot be used by sulfate-reducing bacteria. Overall, current data indicate that Methanosarcinales and Methanomicrobiales are the most dominant methanogens within the entire depth profile down to 100 cm, with higher abundance and diversity of methanogens in the deeper and upper sediment layers, respectively.</abstract><cop>Boston</cop><pub>Springer Science + Business Media</pub><pmid>23306392</pmid><doi>10.1007/s00248-012-0155-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-3628 |
ispartof | Microbial ecology, 2013-08, Vol.66 (2), p.257-267 |
issn | 0095-3628 1432-184X |
language | eng |
recordid | cdi_proquest_miscellaneous_1412563201 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings |
subjects | Animal, plant and microbial ecology Bacteria Bacteria - classification Bacteria - enzymology Bacteria - genetics Bacteria - isolation & purification Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological and medical sciences Biomedical and Life Sciences Bottom sediments Brackish China Ecology Ecosystem ENVIRONMENTAL MICROBIOLOGY Estuaries Fundamental and applied biological sciences. Psychology Geoecology/Natural Processes Geologic Sediments - microbiology Life Sciences Methane - metabolism Methane production Methanococcales Methanogenesis Methanogens Methanomicrobiales Methanosarcinaceae Methanosarcinales Microbial Ecology Microbiology Mud flats Nature Conservation Oryza sativa Oxidoreductases - genetics Oxidoreductases - metabolism Phylogeny Polymerase chain reaction Rivers Rivers - microbiology Salinity Sedimentary soils Sediments Sulfate reduction Sulfates Various environments (extraatmospheric space, air, water) Water Quality/Water Pollution |
title | Methyl Coenzyme M Reductase A (mcrA) Gene-Based Investigation of Methanogens in the Mudflat Sediments of Yangtze River Estuary, China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methyl%20Coenzyme%20M%20Reductase%20A%20(mcrA)%20Gene-Based%20Investigation%20of%20Methanogens%20in%20the%20Mudflat%20Sediments%20of%20Yangtze%20River%20Estuary,%20China&rft.jtitle=Microbial%20ecology&rft.au=Zeleke,%20Jemaneh&rft.date=2013-08-01&rft.volume=66&rft.issue=2&rft.spage=257&rft.epage=267&rft.pages=257-267&rft.issn=0095-3628&rft.eissn=1432-184X&rft.coden=MCBEBU&rft_id=info:doi/10.1007/s00248-012-0155-2&rft_dat=%3Cjstor_proqu%3E23468241%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1398984292&rft_id=info:pmid/23306392&rft_jstor_id=23468241&rfr_iscdi=true |