Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology

Plaque constitution on computed tomography coronary angiography (CTA) is associated with prognosis. At present only visual assessment of plaque constitution is possible. An accurate automatic, quantitative approach for CTA plaque constitution assessment would improve reproducibility and allows highe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Cardiovascular Imaging 2013-06, Vol.29 (5), p.1177-1190
Hauptverfasser: de Graaf, Michiel A., Broersen, Alexander, Kitslaar, Pieter H., Roos, Cornelis J., Dijkstra, Jouke, Lelieveldt, Boudewijn P. F., Jukema, J. Wouter, Schalij, Martin J., Delgado, Victoria, Bax, Jeroen J., Reiber, Johan H. C., Scholte, Arthur J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1190
container_issue 5
container_start_page 1177
container_title International Journal of Cardiovascular Imaging
container_volume 29
creator de Graaf, Michiel A.
Broersen, Alexander
Kitslaar, Pieter H.
Roos, Cornelis J.
Dijkstra, Jouke
Lelieveldt, Boudewijn P. F.
Jukema, J. Wouter
Schalij, Martin J.
Delgado, Victoria
Bax, Jeroen J.
Reiber, Johan H. C.
Scholte, Arthur J.
description Plaque constitution on computed tomography coronary angiography (CTA) is associated with prognosis. At present only visual assessment of plaque constitution is possible. An accurate automatic, quantitative approach for CTA plaque constitution assessment would improve reproducibility and allows higher accuracy. The present study assessed the feasibility of a fully automatic and quantitative analysis of atherosclerosis on CTA. Clinically derived CTA and intravascular ultrasound virtual histology (IVUS VH) datasets were used to investigate the correlation between quantitatively automatically derived CTA parameters and IVUS VH. A total of 57 patients underwent CTA prior to IVUS VH. First, quantitative CTA quantitative computed tomography (QCT) was performed. Per lesion stenosis parameters and plaque volumes were assessed. Using predefined HU thresholds, CTA plaque volume was differentiated in 4 different plaque types necrotic core (NC), dense calcium (DC), fibrotic (FI) and fibro-fatty tissue (FF). At the identical level of the coronary, the same parameters were derived from IVUS VH. Bland–Altman analyses were performed to assess the agreement between QCT and IVUS VH. Assessment of plaque volume using QCT in 108 lesions showed excellent correlation with IVUS VH (r = 0.928, p  
doi_str_mv 10.1007/s10554-013-0194-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1412519415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1412519415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-25195c8cbd167b311f6ecfbf8a61d675a60c7b536a85769bec784f90715eb95e3</originalsourceid><addsrcrecordid>eNqFUslu1TAUtRCIlsIHsEGW2LAJ2ImHmF1VMUmV2MDachznxZVjv3po-_g0vg6neaAKCbHwcO8951wPB4CXGL3FCPF3CSNKSYNwV4cgzd0jcIoprxEn3eN1z0RDuSAn4FlKVwihFrXdU3DSdgRzQvgp-HleclhUthpeF-WznayuUfBQ-RHqWUWls4n2x5YME9QhBq_iAao8mxiSdutsE7y1ea7VZV-yGWFVDbuo9vPhAcPv7DH5HurKSk2tReM28XsB63NUNyrp4lSExdUohVLPcmNjLsrB2aYcXNgdnoMnk3LJvDiuZ-D7xw_fLj43l18_fbk4v2w0QTQ3LcWC6l4PI2Z86DCemNHTMPWK4ZFxqhjSfKAdUz3lTAxG855MAnFMzSCo6c7Am013H8N1MSnLxSZtnFPehJIkJnjtQTD9P7QTPWkJZ6RCX_8FvQol-nqRiuoRQW0vVhTeUPevFc0k99Eu9S0lRnL1gNw8IKsH5OoBeVc5r47KZVjM-Ifx-9MroN0AqZb8zsQHrf-p-gt9h8O5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1380402894</pqid></control><display><type>article</type><title>Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>de Graaf, Michiel A. ; Broersen, Alexander ; Kitslaar, Pieter H. ; Roos, Cornelis J. ; Dijkstra, Jouke ; Lelieveldt, Boudewijn P. F. ; Jukema, J. Wouter ; Schalij, Martin J. ; Delgado, Victoria ; Bax, Jeroen J. ; Reiber, Johan H. C. ; Scholte, Arthur J.</creator><creatorcontrib>de Graaf, Michiel A. ; Broersen, Alexander ; Kitslaar, Pieter H. ; Roos, Cornelis J. ; Dijkstra, Jouke ; Lelieveldt, Boudewijn P. F. ; Jukema, J. Wouter ; Schalij, Martin J. ; Delgado, Victoria ; Bax, Jeroen J. ; Reiber, Johan H. C. ; Scholte, Arthur J.</creatorcontrib><description>Plaque constitution on computed tomography coronary angiography (CTA) is associated with prognosis. At present only visual assessment of plaque constitution is possible. An accurate automatic, quantitative approach for CTA plaque constitution assessment would improve reproducibility and allows higher accuracy. The present study assessed the feasibility of a fully automatic and quantitative analysis of atherosclerosis on CTA. Clinically derived CTA and intravascular ultrasound virtual histology (IVUS VH) datasets were used to investigate the correlation between quantitatively automatically derived CTA parameters and IVUS VH. A total of 57 patients underwent CTA prior to IVUS VH. First, quantitative CTA quantitative computed tomography (QCT) was performed. Per lesion stenosis parameters and plaque volumes were assessed. Using predefined HU thresholds, CTA plaque volume was differentiated in 4 different plaque types necrotic core (NC), dense calcium (DC), fibrotic (FI) and fibro-fatty tissue (FF). At the identical level of the coronary, the same parameters were derived from IVUS VH. Bland–Altman analyses were performed to assess the agreement between QCT and IVUS VH. Assessment of plaque volume using QCT in 108 lesions showed excellent correlation with IVUS VH (r = 0.928, p  &lt; 0.001) (Fig.  1 ). The correlation of both FF and FI volume on IVUS VH and QCT was good (r = 0.714, p  &lt; 0.001 and r = 0.695, p  &lt; 0.001 respectively) with corresponding bias and 95 % limits of agreement of 24 mm 3 (−42; 90) and 7.7 mm 3 (−54; 70). Furthermore, NC and DC were well-correlated in both modalities (r = 0.523, p  &lt; 0.001) and (r = 0.736, p  &lt; 0.001). Automatic, quantitative CTA tissue characterization is feasible using a dedicated software tool. Fig. 1 Schematic illustration of the characterization of coronary plaque on CTA: cross-correlation with IVUS VH. First, the 3-dimensional centerline was generated from the CTA data set using an automatic tree extraction algorithm ( Panel I ). Using a unique registration a complete pullback series of IVUS images was mapped on the CTA volume using true anatomical markers ( Panel II ). Fully automatic lumen and vessel wall contour detection was performed for both imaging modalities ( Panel III ). Finally, fusion-based quantification of atherosclerotic lesions was based on the lumen and vessel wall contours as well as the corresponding reference lines (estimate of normal tapering of the coronary artery), as shown in panel IV . At the level of the minimal lumen area (MLA) ( yellow lines ), stenosis parameters, could be calculated for both imaging techniques. Additionally, plaque volumes and plaque types were derived for the whole coronary artery lesion, ranging from the proximal to distal lesion marker ( blue markers ). Fibrotic tissue was labeled in dark green , Fibro-fatty tissue in light green , dense calcium in white and necrotic core was labeled in red</description><identifier>ISSN: 1569-5794</identifier><identifier>EISSN: 1573-0743</identifier><identifier>EISSN: 1875-8312</identifier><identifier>DOI: 10.1007/s10554-013-0194-x</identifier><identifier>PMID: 23417447</identifier><identifier>CODEN: IJCIBI</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aged ; Algorithms ; Automation, Laboratory ; Cardiac Imaging ; Cardiology ; Coronary Angiography - methods ; Coronary Artery Disease - diagnostic imaging ; Coronary Stenosis - diagnostic imaging ; Coronary Vessels - diagnostic imaging ; Feasibility Studies ; Female ; Fibrosis ; Humans ; Imaging ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Multidetector Computed Tomography ; Necrosis ; Observer Variation ; Original Paper ; Plaque, Atherosclerotic ; Predictive Value of Tests ; Radiographic Image Interpretation, Computer-Assisted ; Radiology ; Reproducibility of Results ; Severity of Illness Index ; Software ; Ultrasonography, Interventional ; Vascular Calcification - diagnostic imaging</subject><ispartof>International Journal of Cardiovascular Imaging, 2013-06, Vol.29 (5), p.1177-1190</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-25195c8cbd167b311f6ecfbf8a61d675a60c7b536a85769bec784f90715eb95e3</citedby><cites>FETCH-LOGICAL-c405t-25195c8cbd167b311f6ecfbf8a61d675a60c7b536a85769bec784f90715eb95e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10554-013-0194-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10554-013-0194-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23417447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Graaf, Michiel A.</creatorcontrib><creatorcontrib>Broersen, Alexander</creatorcontrib><creatorcontrib>Kitslaar, Pieter H.</creatorcontrib><creatorcontrib>Roos, Cornelis J.</creatorcontrib><creatorcontrib>Dijkstra, Jouke</creatorcontrib><creatorcontrib>Lelieveldt, Boudewijn P. F.</creatorcontrib><creatorcontrib>Jukema, J. Wouter</creatorcontrib><creatorcontrib>Schalij, Martin J.</creatorcontrib><creatorcontrib>Delgado, Victoria</creatorcontrib><creatorcontrib>Bax, Jeroen J.</creatorcontrib><creatorcontrib>Reiber, Johan H. C.</creatorcontrib><creatorcontrib>Scholte, Arthur J.</creatorcontrib><title>Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology</title><title>International Journal of Cardiovascular Imaging</title><addtitle>Int J Cardiovasc Imaging</addtitle><addtitle>Int J Cardiovasc Imaging</addtitle><description>Plaque constitution on computed tomography coronary angiography (CTA) is associated with prognosis. At present only visual assessment of plaque constitution is possible. An accurate automatic, quantitative approach for CTA plaque constitution assessment would improve reproducibility and allows higher accuracy. The present study assessed the feasibility of a fully automatic and quantitative analysis of atherosclerosis on CTA. Clinically derived CTA and intravascular ultrasound virtual histology (IVUS VH) datasets were used to investigate the correlation between quantitatively automatically derived CTA parameters and IVUS VH. A total of 57 patients underwent CTA prior to IVUS VH. First, quantitative CTA quantitative computed tomography (QCT) was performed. Per lesion stenosis parameters and plaque volumes were assessed. Using predefined HU thresholds, CTA plaque volume was differentiated in 4 different plaque types necrotic core (NC), dense calcium (DC), fibrotic (FI) and fibro-fatty tissue (FF). At the identical level of the coronary, the same parameters were derived from IVUS VH. Bland–Altman analyses were performed to assess the agreement between QCT and IVUS VH. Assessment of plaque volume using QCT in 108 lesions showed excellent correlation with IVUS VH (r = 0.928, p  &lt; 0.001) (Fig.  1 ). The correlation of both FF and FI volume on IVUS VH and QCT was good (r = 0.714, p  &lt; 0.001 and r = 0.695, p  &lt; 0.001 respectively) with corresponding bias and 95 % limits of agreement of 24 mm 3 (−42; 90) and 7.7 mm 3 (−54; 70). Furthermore, NC and DC were well-correlated in both modalities (r = 0.523, p  &lt; 0.001) and (r = 0.736, p  &lt; 0.001). Automatic, quantitative CTA tissue characterization is feasible using a dedicated software tool. Fig. 1 Schematic illustration of the characterization of coronary plaque on CTA: cross-correlation with IVUS VH. First, the 3-dimensional centerline was generated from the CTA data set using an automatic tree extraction algorithm ( Panel I ). Using a unique registration a complete pullback series of IVUS images was mapped on the CTA volume using true anatomical markers ( Panel II ). Fully automatic lumen and vessel wall contour detection was performed for both imaging modalities ( Panel III ). Finally, fusion-based quantification of atherosclerotic lesions was based on the lumen and vessel wall contours as well as the corresponding reference lines (estimate of normal tapering of the coronary artery), as shown in panel IV . At the level of the minimal lumen area (MLA) ( yellow lines ), stenosis parameters, could be calculated for both imaging techniques. Additionally, plaque volumes and plaque types were derived for the whole coronary artery lesion, ranging from the proximal to distal lesion marker ( blue markers ). Fibrotic tissue was labeled in dark green , Fibro-fatty tissue in light green , dense calcium in white and necrotic core was labeled in red</description><subject>Aged</subject><subject>Algorithms</subject><subject>Automation, Laboratory</subject><subject>Cardiac Imaging</subject><subject>Cardiology</subject><subject>Coronary Angiography - methods</subject><subject>Coronary Artery Disease - diagnostic imaging</subject><subject>Coronary Stenosis - diagnostic imaging</subject><subject>Coronary Vessels - diagnostic imaging</subject><subject>Feasibility Studies</subject><subject>Female</subject><subject>Fibrosis</subject><subject>Humans</subject><subject>Imaging</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Multidetector Computed Tomography</subject><subject>Necrosis</subject><subject>Observer Variation</subject><subject>Original Paper</subject><subject>Plaque, Atherosclerotic</subject><subject>Predictive Value of Tests</subject><subject>Radiographic Image Interpretation, Computer-Assisted</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Severity of Illness Index</subject><subject>Software</subject><subject>Ultrasonography, Interventional</subject><subject>Vascular Calcification - diagnostic imaging</subject><issn>1569-5794</issn><issn>1573-0743</issn><issn>1875-8312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFUslu1TAUtRCIlsIHsEGW2LAJ2ImHmF1VMUmV2MDachznxZVjv3po-_g0vg6neaAKCbHwcO8951wPB4CXGL3FCPF3CSNKSYNwV4cgzd0jcIoprxEn3eN1z0RDuSAn4FlKVwihFrXdU3DSdgRzQvgp-HleclhUthpeF-WznayuUfBQ-RHqWUWls4n2x5YME9QhBq_iAao8mxiSdutsE7y1ea7VZV-yGWFVDbuo9vPhAcPv7DH5HurKSk2tReM28XsB63NUNyrp4lSExdUohVLPcmNjLsrB2aYcXNgdnoMnk3LJvDiuZ-D7xw_fLj43l18_fbk4v2w0QTQ3LcWC6l4PI2Z86DCemNHTMPWK4ZFxqhjSfKAdUz3lTAxG855MAnFMzSCo6c7Am013H8N1MSnLxSZtnFPehJIkJnjtQTD9P7QTPWkJZ6RCX_8FvQol-nqRiuoRQW0vVhTeUPevFc0k99Eu9S0lRnL1gNw8IKsH5OoBeVc5r47KZVjM-Ifx-9MroN0AqZb8zsQHrf-p-gt9h8O5</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>de Graaf, Michiel A.</creator><creator>Broersen, Alexander</creator><creator>Kitslaar, Pieter H.</creator><creator>Roos, Cornelis J.</creator><creator>Dijkstra, Jouke</creator><creator>Lelieveldt, Boudewijn P. F.</creator><creator>Jukema, J. Wouter</creator><creator>Schalij, Martin J.</creator><creator>Delgado, Victoria</creator><creator>Bax, Jeroen J.</creator><creator>Reiber, Johan H. C.</creator><creator>Scholte, Arthur J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20130601</creationdate><title>Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology</title><author>de Graaf, Michiel A. ; Broersen, Alexander ; Kitslaar, Pieter H. ; Roos, Cornelis J. ; Dijkstra, Jouke ; Lelieveldt, Boudewijn P. F. ; Jukema, J. Wouter ; Schalij, Martin J. ; Delgado, Victoria ; Bax, Jeroen J. ; Reiber, Johan H. C. ; Scholte, Arthur J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-25195c8cbd167b311f6ecfbf8a61d675a60c7b536a85769bec784f90715eb95e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Automation, Laboratory</topic><topic>Cardiac Imaging</topic><topic>Cardiology</topic><topic>Coronary Angiography - methods</topic><topic>Coronary Artery Disease - diagnostic imaging</topic><topic>Coronary Stenosis - diagnostic imaging</topic><topic>Coronary Vessels - diagnostic imaging</topic><topic>Feasibility Studies</topic><topic>Female</topic><topic>Fibrosis</topic><topic>Humans</topic><topic>Imaging</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Multidetector Computed Tomography</topic><topic>Necrosis</topic><topic>Observer Variation</topic><topic>Original Paper</topic><topic>Plaque, Atherosclerotic</topic><topic>Predictive Value of Tests</topic><topic>Radiographic Image Interpretation, Computer-Assisted</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Severity of Illness Index</topic><topic>Software</topic><topic>Ultrasonography, Interventional</topic><topic>Vascular Calcification - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Graaf, Michiel A.</creatorcontrib><creatorcontrib>Broersen, Alexander</creatorcontrib><creatorcontrib>Kitslaar, Pieter H.</creatorcontrib><creatorcontrib>Roos, Cornelis J.</creatorcontrib><creatorcontrib>Dijkstra, Jouke</creatorcontrib><creatorcontrib>Lelieveldt, Boudewijn P. F.</creatorcontrib><creatorcontrib>Jukema, J. Wouter</creatorcontrib><creatorcontrib>Schalij, Martin J.</creatorcontrib><creatorcontrib>Delgado, Victoria</creatorcontrib><creatorcontrib>Bax, Jeroen J.</creatorcontrib><creatorcontrib>Reiber, Johan H. C.</creatorcontrib><creatorcontrib>Scholte, Arthur J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>International Journal of Cardiovascular Imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Graaf, Michiel A.</au><au>Broersen, Alexander</au><au>Kitslaar, Pieter H.</au><au>Roos, Cornelis J.</au><au>Dijkstra, Jouke</au><au>Lelieveldt, Boudewijn P. F.</au><au>Jukema, J. Wouter</au><au>Schalij, Martin J.</au><au>Delgado, Victoria</au><au>Bax, Jeroen J.</au><au>Reiber, Johan H. C.</au><au>Scholte, Arthur J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology</atitle><jtitle>International Journal of Cardiovascular Imaging</jtitle><stitle>Int J Cardiovasc Imaging</stitle><addtitle>Int J Cardiovasc Imaging</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>29</volume><issue>5</issue><spage>1177</spage><epage>1190</epage><pages>1177-1190</pages><issn>1569-5794</issn><eissn>1573-0743</eissn><eissn>1875-8312</eissn><coden>IJCIBI</coden><abstract>Plaque constitution on computed tomography coronary angiography (CTA) is associated with prognosis. At present only visual assessment of plaque constitution is possible. An accurate automatic, quantitative approach for CTA plaque constitution assessment would improve reproducibility and allows higher accuracy. The present study assessed the feasibility of a fully automatic and quantitative analysis of atherosclerosis on CTA. Clinically derived CTA and intravascular ultrasound virtual histology (IVUS VH) datasets were used to investigate the correlation between quantitatively automatically derived CTA parameters and IVUS VH. A total of 57 patients underwent CTA prior to IVUS VH. First, quantitative CTA quantitative computed tomography (QCT) was performed. Per lesion stenosis parameters and plaque volumes were assessed. Using predefined HU thresholds, CTA plaque volume was differentiated in 4 different plaque types necrotic core (NC), dense calcium (DC), fibrotic (FI) and fibro-fatty tissue (FF). At the identical level of the coronary, the same parameters were derived from IVUS VH. Bland–Altman analyses were performed to assess the agreement between QCT and IVUS VH. Assessment of plaque volume using QCT in 108 lesions showed excellent correlation with IVUS VH (r = 0.928, p  &lt; 0.001) (Fig.  1 ). The correlation of both FF and FI volume on IVUS VH and QCT was good (r = 0.714, p  &lt; 0.001 and r = 0.695, p  &lt; 0.001 respectively) with corresponding bias and 95 % limits of agreement of 24 mm 3 (−42; 90) and 7.7 mm 3 (−54; 70). Furthermore, NC and DC were well-correlated in both modalities (r = 0.523, p  &lt; 0.001) and (r = 0.736, p  &lt; 0.001). Automatic, quantitative CTA tissue characterization is feasible using a dedicated software tool. Fig. 1 Schematic illustration of the characterization of coronary plaque on CTA: cross-correlation with IVUS VH. First, the 3-dimensional centerline was generated from the CTA data set using an automatic tree extraction algorithm ( Panel I ). Using a unique registration a complete pullback series of IVUS images was mapped on the CTA volume using true anatomical markers ( Panel II ). Fully automatic lumen and vessel wall contour detection was performed for both imaging modalities ( Panel III ). Finally, fusion-based quantification of atherosclerotic lesions was based on the lumen and vessel wall contours as well as the corresponding reference lines (estimate of normal tapering of the coronary artery), as shown in panel IV . At the level of the minimal lumen area (MLA) ( yellow lines ), stenosis parameters, could be calculated for both imaging techniques. Additionally, plaque volumes and plaque types were derived for the whole coronary artery lesion, ranging from the proximal to distal lesion marker ( blue markers ). Fibrotic tissue was labeled in dark green , Fibro-fatty tissue in light green , dense calcium in white and necrotic core was labeled in red</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>23417447</pmid><doi>10.1007/s10554-013-0194-x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-5794
ispartof International Journal of Cardiovascular Imaging, 2013-06, Vol.29 (5), p.1177-1190
issn 1569-5794
1573-0743
1875-8312
language eng
recordid cdi_proquest_miscellaneous_1412519415
source MEDLINE; SpringerLink Journals
subjects Aged
Algorithms
Automation, Laboratory
Cardiac Imaging
Cardiology
Coronary Angiography - methods
Coronary Artery Disease - diagnostic imaging
Coronary Stenosis - diagnostic imaging
Coronary Vessels - diagnostic imaging
Feasibility Studies
Female
Fibrosis
Humans
Imaging
Male
Medicine
Medicine & Public Health
Middle Aged
Multidetector Computed Tomography
Necrosis
Observer Variation
Original Paper
Plaque, Atherosclerotic
Predictive Value of Tests
Radiographic Image Interpretation, Computer-Assisted
Radiology
Reproducibility of Results
Severity of Illness Index
Software
Ultrasonography, Interventional
Vascular Calcification - diagnostic imaging
title Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20quantification%20and%20characterization%20of%20coronary%20atherosclerosis%20with%20computed%20tomography%20coronary%20angiography:%20cross-correlation%20with%20intravascular%20ultrasound%20virtual%20histology&rft.jtitle=International%20Journal%20of%20Cardiovascular%20Imaging&rft.au=de%20Graaf,%20Michiel%20A.&rft.date=2013-06-01&rft.volume=29&rft.issue=5&rft.spage=1177&rft.epage=1190&rft.pages=1177-1190&rft.issn=1569-5794&rft.eissn=1573-0743&rft.coden=IJCIBI&rft_id=info:doi/10.1007/s10554-013-0194-x&rft_dat=%3Cproquest_cross%3E1412519415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1380402894&rft_id=info:pmid/23417447&rfr_iscdi=true