Evolutionary diversification of the multimeric states of proteins
One of the most striking features of proteins is their common assembly into multimeric structures, usually homomers with even numbers of subunits all derived from the same genetic locus. However, although substantial structural variation for orthologous proteins exists within and among major phyloge...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-07, Vol.110 (30), p.E2821-E2828 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E2828 |
---|---|
container_issue | 30 |
container_start_page | E2821 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Lynch, Michael |
description | One of the most striking features of proteins is their common assembly into multimeric structures, usually homomers with even numbers of subunits all derived from the same genetic locus. However, although substantial structural variation for orthologous proteins exists within and among major phylogenetic lineages, in striking contrast to patterns of gene structure and genome organization, there appears to be no correlation between the level of protein structural complexity and organismal complexity. In addition, there is no evidence that protein architectural differences are driven by lineage-specific differences in selective pressures. Here, it is suggested that variation in the multimeric states of proteins can readily arise from stochastic transitions resulting from the joint processes of mutation and random genetic drift, even in the face of constant directional selection for one particular protein architecture across all lineages. Under the proposed hypothesis, on a long evolutionary timescale, the numbers of transitions from monomers to dimers should approximate the numbers in the opposite direction and similarly for transitions between higher-order structures. |
doi_str_mv | 10.1073/pnas.1310980110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1412513760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3032663971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-472e29538d2ff0aa2fc7c346937119bbd13d45837a3ac387d93f6dff0ecc8e353</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaTZpz721hlxycTLSyJZ8KYSwaQuBHpKchVaWEgXb2kryQv_7yux2-3EaMfObxzw9Qj5QuKQg8Go76XRJkUIngVJ4RVblSeuWd_CarACYqCVn_IScpvQCAF0j4S05YSixbbFbkev1Lgxz9mHS8WfV-52NyTtv9NKqgqvys63Gech-tNGbKmWdbVoG2xiy9VN6R944PST7_lDPyOPt-uHma333_cu3m-u72nABueaCWdY1KHvmHGjNnBEGeduhoLTbbHqKPW8kCo3aoBR9h67tC2qNkRYbPCOf97rbeTPa3tgpRz2obfRjOV0F7dW_k8k_q6ewUyhYQwGLwMVBIIYfs01ZjT4ZOwx6smFOinJaQBQtFPT8P_QlzHEq9haqEeV7uSjU1Z4yMaQUrTseQ0Et8aglHvUnnrLx8W8PR_53HgWoDsCyeZQreghqzSSjBfm0R5wOSj9Fn9TjPQPaAlCUxSf-AsR3oAs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1415749047</pqid></control><display><type>article</type><title>Evolutionary diversification of the multimeric states of proteins</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lynch, Michael</creator><creatorcontrib>Lynch, Michael</creatorcontrib><description>One of the most striking features of proteins is their common assembly into multimeric structures, usually homomers with even numbers of subunits all derived from the same genetic locus. However, although substantial structural variation for orthologous proteins exists within and among major phylogenetic lineages, in striking contrast to patterns of gene structure and genome organization, there appears to be no correlation between the level of protein structural complexity and organismal complexity. In addition, there is no evidence that protein architectural differences are driven by lineage-specific differences in selective pressures. Here, it is suggested that variation in the multimeric states of proteins can readily arise from stochastic transitions resulting from the joint processes of mutation and random genetic drift, even in the face of constant directional selection for one particular protein architecture across all lineages. Under the proposed hypothesis, on a long evolutionary timescale, the numbers of transitions from monomers to dimers should approximate the numbers in the opposite direction and similarly for transitions between higher-order structures.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1310980110</identifier><identifier>PMID: 23836639</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biopolymers - chemistry ; Correlation analysis ; Evolution, Molecular ; Genomes ; Mutation ; Phylogenetics ; Phylogeny ; Physical Sciences ; PNAS Plus ; Proteins ; Proteins - chemistry ; Proteins - genetics ; Stochastic models</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (30), p.E2821-E2828</ispartof><rights>Copyright National Academy of Sciences Jul 23, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-472e29538d2ff0aa2fc7c346937119bbd13d45837a3ac387d93f6dff0ecc8e353</citedby><cites>FETCH-LOGICAL-c470t-472e29538d2ff0aa2fc7c346937119bbd13d45837a3ac387d93f6dff0ecc8e353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/30.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725103/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725103/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23836639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lynch, Michael</creatorcontrib><title>Evolutionary diversification of the multimeric states of proteins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>One of the most striking features of proteins is their common assembly into multimeric structures, usually homomers with even numbers of subunits all derived from the same genetic locus. However, although substantial structural variation for orthologous proteins exists within and among major phylogenetic lineages, in striking contrast to patterns of gene structure and genome organization, there appears to be no correlation between the level of protein structural complexity and organismal complexity. In addition, there is no evidence that protein architectural differences are driven by lineage-specific differences in selective pressures. Here, it is suggested that variation in the multimeric states of proteins can readily arise from stochastic transitions resulting from the joint processes of mutation and random genetic drift, even in the face of constant directional selection for one particular protein architecture across all lineages. Under the proposed hypothesis, on a long evolutionary timescale, the numbers of transitions from monomers to dimers should approximate the numbers in the opposite direction and similarly for transitions between higher-order structures.</description><subject>Biological Sciences</subject><subject>Biopolymers - chemistry</subject><subject>Correlation analysis</subject><subject>Evolution, Molecular</subject><subject>Genomes</subject><subject>Mutation</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Stochastic models</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVpaTZpz721hlxycTLSyJZ8KYSwaQuBHpKchVaWEgXb2kryQv_7yux2-3EaMfObxzw9Qj5QuKQg8Go76XRJkUIngVJ4RVblSeuWd_CarACYqCVn_IScpvQCAF0j4S05YSixbbFbkev1Lgxz9mHS8WfV-52NyTtv9NKqgqvys63Gech-tNGbKmWdbVoG2xiy9VN6R944PST7_lDPyOPt-uHma333_cu3m-u72nABueaCWdY1KHvmHGjNnBEGeduhoLTbbHqKPW8kCo3aoBR9h67tC2qNkRYbPCOf97rbeTPa3tgpRz2obfRjOV0F7dW_k8k_q6ewUyhYQwGLwMVBIIYfs01ZjT4ZOwx6smFOinJaQBQtFPT8P_QlzHEq9haqEeV7uSjU1Z4yMaQUrTseQ0Et8aglHvUnnrLx8W8PR_53HgWoDsCyeZQreghqzSSjBfm0R5wOSj9Fn9TjPQPaAlCUxSf-AsR3oAs</recordid><startdate>20130723</startdate><enddate>20130723</enddate><creator>Lynch, Michael</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130723</creationdate><title>Evolutionary diversification of the multimeric states of proteins</title><author>Lynch, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-472e29538d2ff0aa2fc7c346937119bbd13d45837a3ac387d93f6dff0ecc8e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Sciences</topic><topic>Biopolymers - chemistry</topic><topic>Correlation analysis</topic><topic>Evolution, Molecular</topic><topic>Genomes</topic><topic>Mutation</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lynch, Michael</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lynch, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary diversification of the multimeric states of proteins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-07-23</date><risdate>2013</risdate><volume>110</volume><issue>30</issue><spage>E2821</spage><epage>E2828</epage><pages>E2821-E2828</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>One of the most striking features of proteins is their common assembly into multimeric structures, usually homomers with even numbers of subunits all derived from the same genetic locus. However, although substantial structural variation for orthologous proteins exists within and among major phylogenetic lineages, in striking contrast to patterns of gene structure and genome organization, there appears to be no correlation between the level of protein structural complexity and organismal complexity. In addition, there is no evidence that protein architectural differences are driven by lineage-specific differences in selective pressures. Here, it is suggested that variation in the multimeric states of proteins can readily arise from stochastic transitions resulting from the joint processes of mutation and random genetic drift, even in the face of constant directional selection for one particular protein architecture across all lineages. Under the proposed hypothesis, on a long evolutionary timescale, the numbers of transitions from monomers to dimers should approximate the numbers in the opposite direction and similarly for transitions between higher-order structures.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23836639</pmid><doi>10.1073/pnas.1310980110</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (30), p.E2821-E2828 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1412513760 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Biopolymers - chemistry Correlation analysis Evolution, Molecular Genomes Mutation Phylogenetics Phylogeny Physical Sciences PNAS Plus Proteins Proteins - chemistry Proteins - genetics Stochastic models |
title | Evolutionary diversification of the multimeric states of proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20diversification%20of%20the%20multimeric%20states%20of%20proteins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lynch,%20Michael&rft.date=2013-07-23&rft.volume=110&rft.issue=30&rft.spage=E2821&rft.epage=E2828&rft.pages=E2821-E2828&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1310980110&rft_dat=%3Cproquest_cross%3E3032663971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1415749047&rft_id=info:pmid/23836639&rfr_iscdi=true |