Evolutionary diversification of the multimeric states of proteins

One of the most striking features of proteins is their common assembly into multimeric structures, usually homomers with even numbers of subunits all derived from the same genetic locus. However, although substantial structural variation for orthologous proteins exists within and among major phyloge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-07, Vol.110 (30), p.E2821-E2828
1. Verfasser: Lynch, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E2828
container_issue 30
container_start_page E2821
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Lynch, Michael
description One of the most striking features of proteins is their common assembly into multimeric structures, usually homomers with even numbers of subunits all derived from the same genetic locus. However, although substantial structural variation for orthologous proteins exists within and among major phylogenetic lineages, in striking contrast to patterns of gene structure and genome organization, there appears to be no correlation between the level of protein structural complexity and organismal complexity. In addition, there is no evidence that protein architectural differences are driven by lineage-specific differences in selective pressures. Here, it is suggested that variation in the multimeric states of proteins can readily arise from stochastic transitions resulting from the joint processes of mutation and random genetic drift, even in the face of constant directional selection for one particular protein architecture across all lineages. Under the proposed hypothesis, on a long evolutionary timescale, the numbers of transitions from monomers to dimers should approximate the numbers in the opposite direction and similarly for transitions between higher-order structures.
doi_str_mv 10.1073/pnas.1310980110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1412513760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3032663971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-472e29538d2ff0aa2fc7c346937119bbd13d45837a3ac387d93f6dff0ecc8e353</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaTZpz721hlxycTLSyJZ8KYSwaQuBHpKchVaWEgXb2kryQv_7yux2-3EaMfObxzw9Qj5QuKQg8Go76XRJkUIngVJ4RVblSeuWd_CarACYqCVn_IScpvQCAF0j4S05YSixbbFbkev1Lgxz9mHS8WfV-52NyTtv9NKqgqvys63Gech-tNGbKmWdbVoG2xiy9VN6R944PST7_lDPyOPt-uHma333_cu3m-u72nABueaCWdY1KHvmHGjNnBEGeduhoLTbbHqKPW8kCo3aoBR9h67tC2qNkRYbPCOf97rbeTPa3tgpRz2obfRjOV0F7dW_k8k_q6ewUyhYQwGLwMVBIIYfs01ZjT4ZOwx6smFOinJaQBQtFPT8P_QlzHEq9haqEeV7uSjU1Z4yMaQUrTseQ0Et8aglHvUnnrLx8W8PR_53HgWoDsCyeZQreghqzSSjBfm0R5wOSj9Fn9TjPQPaAlCUxSf-AsR3oAs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1415749047</pqid></control><display><type>article</type><title>Evolutionary diversification of the multimeric states of proteins</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lynch, Michael</creator><creatorcontrib>Lynch, Michael</creatorcontrib><description>One of the most striking features of proteins is their common assembly into multimeric structures, usually homomers with even numbers of subunits all derived from the same genetic locus. However, although substantial structural variation for orthologous proteins exists within and among major phylogenetic lineages, in striking contrast to patterns of gene structure and genome organization, there appears to be no correlation between the level of protein structural complexity and organismal complexity. In addition, there is no evidence that protein architectural differences are driven by lineage-specific differences in selective pressures. Here, it is suggested that variation in the multimeric states of proteins can readily arise from stochastic transitions resulting from the joint processes of mutation and random genetic drift, even in the face of constant directional selection for one particular protein architecture across all lineages. Under the proposed hypothesis, on a long evolutionary timescale, the numbers of transitions from monomers to dimers should approximate the numbers in the opposite direction and similarly for transitions between higher-order structures.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1310980110</identifier><identifier>PMID: 23836639</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biopolymers - chemistry ; Correlation analysis ; Evolution, Molecular ; Genomes ; Mutation ; Phylogenetics ; Phylogeny ; Physical Sciences ; PNAS Plus ; Proteins ; Proteins - chemistry ; Proteins - genetics ; Stochastic models</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (30), p.E2821-E2828</ispartof><rights>Copyright National Academy of Sciences Jul 23, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-472e29538d2ff0aa2fc7c346937119bbd13d45837a3ac387d93f6dff0ecc8e353</citedby><cites>FETCH-LOGICAL-c470t-472e29538d2ff0aa2fc7c346937119bbd13d45837a3ac387d93f6dff0ecc8e353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/30.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725103/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725103/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23836639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lynch, Michael</creatorcontrib><title>Evolutionary diversification of the multimeric states of proteins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>One of the most striking features of proteins is their common assembly into multimeric structures, usually homomers with even numbers of subunits all derived from the same genetic locus. However, although substantial structural variation for orthologous proteins exists within and among major phylogenetic lineages, in striking contrast to patterns of gene structure and genome organization, there appears to be no correlation between the level of protein structural complexity and organismal complexity. In addition, there is no evidence that protein architectural differences are driven by lineage-specific differences in selective pressures. Here, it is suggested that variation in the multimeric states of proteins can readily arise from stochastic transitions resulting from the joint processes of mutation and random genetic drift, even in the face of constant directional selection for one particular protein architecture across all lineages. Under the proposed hypothesis, on a long evolutionary timescale, the numbers of transitions from monomers to dimers should approximate the numbers in the opposite direction and similarly for transitions between higher-order structures.</description><subject>Biological Sciences</subject><subject>Biopolymers - chemistry</subject><subject>Correlation analysis</subject><subject>Evolution, Molecular</subject><subject>Genomes</subject><subject>Mutation</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Stochastic models</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVpaTZpz721hlxycTLSyJZ8KYSwaQuBHpKchVaWEgXb2kryQv_7yux2-3EaMfObxzw9Qj5QuKQg8Go76XRJkUIngVJ4RVblSeuWd_CarACYqCVn_IScpvQCAF0j4S05YSixbbFbkev1Lgxz9mHS8WfV-52NyTtv9NKqgqvys63Gech-tNGbKmWdbVoG2xiy9VN6R944PST7_lDPyOPt-uHma333_cu3m-u72nABueaCWdY1KHvmHGjNnBEGeduhoLTbbHqKPW8kCo3aoBR9h67tC2qNkRYbPCOf97rbeTPa3tgpRz2obfRjOV0F7dW_k8k_q6ewUyhYQwGLwMVBIIYfs01ZjT4ZOwx6smFOinJaQBQtFPT8P_QlzHEq9haqEeV7uSjU1Z4yMaQUrTseQ0Et8aglHvUnnrLx8W8PR_53HgWoDsCyeZQreghqzSSjBfm0R5wOSj9Fn9TjPQPaAlCUxSf-AsR3oAs</recordid><startdate>20130723</startdate><enddate>20130723</enddate><creator>Lynch, Michael</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130723</creationdate><title>Evolutionary diversification of the multimeric states of proteins</title><author>Lynch, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-472e29538d2ff0aa2fc7c346937119bbd13d45837a3ac387d93f6dff0ecc8e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Sciences</topic><topic>Biopolymers - chemistry</topic><topic>Correlation analysis</topic><topic>Evolution, Molecular</topic><topic>Genomes</topic><topic>Mutation</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lynch, Michael</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lynch, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary diversification of the multimeric states of proteins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-07-23</date><risdate>2013</risdate><volume>110</volume><issue>30</issue><spage>E2821</spage><epage>E2828</epage><pages>E2821-E2828</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>One of the most striking features of proteins is their common assembly into multimeric structures, usually homomers with even numbers of subunits all derived from the same genetic locus. However, although substantial structural variation for orthologous proteins exists within and among major phylogenetic lineages, in striking contrast to patterns of gene structure and genome organization, there appears to be no correlation between the level of protein structural complexity and organismal complexity. In addition, there is no evidence that protein architectural differences are driven by lineage-specific differences in selective pressures. Here, it is suggested that variation in the multimeric states of proteins can readily arise from stochastic transitions resulting from the joint processes of mutation and random genetic drift, even in the face of constant directional selection for one particular protein architecture across all lineages. Under the proposed hypothesis, on a long evolutionary timescale, the numbers of transitions from monomers to dimers should approximate the numbers in the opposite direction and similarly for transitions between higher-order structures.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23836639</pmid><doi>10.1073/pnas.1310980110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (30), p.E2821-E2828
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1412513760
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Biopolymers - chemistry
Correlation analysis
Evolution, Molecular
Genomes
Mutation
Phylogenetics
Phylogeny
Physical Sciences
PNAS Plus
Proteins
Proteins - chemistry
Proteins - genetics
Stochastic models
title Evolutionary diversification of the multimeric states of proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20diversification%20of%20the%20multimeric%20states%20of%20proteins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lynch,%20Michael&rft.date=2013-07-23&rft.volume=110&rft.issue=30&rft.spage=E2821&rft.epage=E2828&rft.pages=E2821-E2828&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1310980110&rft_dat=%3Cproquest_cross%3E3032663971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1415749047&rft_id=info:pmid/23836639&rfr_iscdi=true