Endothelial Dysfunction in Small Arteries of Essential Hypertensive Patients: Role of Cyclooxygenase-2 in Oxidative Stress Generation

Essential hypertensive patients show a reduced nitric oxide availability secondary to oxidative stress generation in peripheral microcirculation. Cyclooxygenase (COX) contributes to reduce nitric oxide availability. We assessed the possible vascular sources of oxidative stress, including COX-1, COX-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hypertension (Dallas, Tex. 1979) Tex. 1979), 2013-08, Vol.62 (2), p.337-344
Hauptverfasser: Virdis, Agostino, Bacca, Alessandra, Colucci, Rocchina, Duranti, Emiliano, Fornai, Matteo, Materazzi, Gabriele, Ippolito, Chiara, Bernardini, Nunzia, Blandizzi, Corrado, Bernini, Giampaolo, Taddei, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Essential hypertensive patients show a reduced nitric oxide availability secondary to oxidative stress generation in peripheral microcirculation. Cyclooxygenase (COX) contributes to reduce nitric oxide availability. We assessed the possible vascular sources of oxidative stress, including COX-1, COX-2, and nicotinamide adenine dinucleotide phosphate oxidase, as determinants of endothelial dysfunction in small arteries isolated from essential hypertensive patients or normotensive controls. Small arteries were dissected after subcutaneous fat biopsies and evaluated on a pressurized micromyograph. Endothelium-dependent vasodilation was assessed by acetylcholine, repeated under NG-nitro-L-arginine methyl ester, SC-560 (COX-1 inhibitor), DuP-697 (COX-2 inhibitor), ascorbic acid, or the nicotinamide adenine dinucleotide phosphate oxidase inhibitors apocynin or diphenylene iodonium. Vascular oxidative stress generation (fluorescent dihydroethidium), COX-1 and COX-2 expression (Western blot), and localization (immunohistochemistry) were also assessed. In controls, response to acetylcholine was blunted by NG-nitro-L-arginine methyl ester (P
ISSN:0194-911X
1524-4563
DOI:10.1161/HYPERTENSIONAHA.111.00995