Hydrogen crossover in high-temperature PEM fuel cells
In this paper, hydrogen crossover was measured in an environment of high-temperature proton exchange membrane (PEM) fuel cells using a steady-state electrochemical method at various temperatures ( T) (80–120 °C), backpressures ( P) (1.0–3.0 atm), and relative humidities (RH) (25–100%). An H 2 crosso...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2007-05, Vol.167 (1), p.25-31 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | Journal of power sources |
container_volume | 167 |
creator | Cheng, Xuan Zhang, Jianlu Tang, Yanghua Song, Chaojie Shen, Jun Song, Datong Zhang, Jiujun |
description | In this paper, hydrogen crossover was measured in an environment of high-temperature proton exchange membrane (PEM) fuel cells using a steady-state electrochemical method at various temperatures (
T) (80–120
°C), backpressures (
P) (1.0–3.0
atm), and relative humidities (RH) (25–100%). An H
2 crossover model based on an MEA consisting of five layers – anode gas diffusion layer, anode catalyst layer, proton exchange membrane (Nafion 112 or Nafion 117), cathode catalyst layer, and cathode gas diffusion layer – was constructed to obtain an expression for H
2 permeability coefficients as a function of measured H
2 crossover rates and controlled H
2 partial pressures. The model analysis suggests that the dominant factor in the overall H
2 crossover is the step of H
2 diffusing through the PEM. The H
2 permeability coefficients as a function of
T,
P, and RH obtained in this study show that the increases in both
T and
P could increase the H
2 permeability coefficient at any given RH. However, the effect of RH on the permeability coefficient seems to be more complicated. The
T effect is much larger than that of
P and RH. Through experimental data simulation an equation was obtained to describe the
T dependencies of the H
2 permeability coefficient, based on which other parameters such as maximum permeability coefficients and activation energies for H
2 crossover through both Nafion 112 and 117 membranes were also evaluated. Both Nafion 112 and Nafion 117 showed similar values of such parameters, suggesting that membrane thickness does not play a significant role in the H
2 crossover mechanism. |
doi_str_mv | 10.1016/j.jpowsour.2007.02.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14034999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775307003539</els_id><sourcerecordid>14034999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-ed806877eff2cafc4768aeac02293f24777e2c4c29257c3cf796e497c758ef363</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMIvoFzgluBH4k1uoKpQpCI4wNmynHXrKE2CnRT170lpEUekkfawMzs7Q8g1owmjTN5VSdW1X6EdfMIphYTyEXBCJiwHEXPIslMyoQLyGCAT5-QihIpSyhjQCckWu9K3K2wi49sQ2i36yDXR2q3WcY-bDr3uB4_R2_wlsgPWkcG6DpfkzOo64NVxTsnH4_x9toiXr0_Ps4dlbFKW9jGWOZU5AFrLjbYmBZlr1IZyXgjLUxhX3KSGFzwDI4yFQmJagIEsRyukmJLbw93Ot58Dhl5tXNh_oBtsh6BYSkVaFMVIlAfiTwqPVnXebbTfKUbVviVVqd-W1L4lRfkIGIU3RwcdjK6t141x4U-dS5CFFCPv_sDDMe7WoVfBOGwMls6j6VXZuv-svgEAPYEn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14034999</pqid></control><display><type>article</type><title>Hydrogen crossover in high-temperature PEM fuel cells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cheng, Xuan ; Zhang, Jianlu ; Tang, Yanghua ; Song, Chaojie ; Shen, Jun ; Song, Datong ; Zhang, Jiujun</creator><creatorcontrib>Cheng, Xuan ; Zhang, Jianlu ; Tang, Yanghua ; Song, Chaojie ; Shen, Jun ; Song, Datong ; Zhang, Jiujun</creatorcontrib><description>In this paper, hydrogen crossover was measured in an environment of high-temperature proton exchange membrane (PEM) fuel cells using a steady-state electrochemical method at various temperatures (
T) (80–120
°C), backpressures (
P) (1.0–3.0
atm), and relative humidities (RH) (25–100%). An H
2 crossover model based on an MEA consisting of five layers – anode gas diffusion layer, anode catalyst layer, proton exchange membrane (Nafion 112 or Nafion 117), cathode catalyst layer, and cathode gas diffusion layer – was constructed to obtain an expression for H
2 permeability coefficients as a function of measured H
2 crossover rates and controlled H
2 partial pressures. The model analysis suggests that the dominant factor in the overall H
2 crossover is the step of H
2 diffusing through the PEM. The H
2 permeability coefficients as a function of
T,
P, and RH obtained in this study show that the increases in both
T and
P could increase the H
2 permeability coefficient at any given RH. However, the effect of RH on the permeability coefficient seems to be more complicated. The
T effect is much larger than that of
P and RH. Through experimental data simulation an equation was obtained to describe the
T dependencies of the H
2 permeability coefficient, based on which other parameters such as maximum permeability coefficients and activation energies for H
2 crossover through both Nafion 112 and 117 membranes were also evaluated. Both Nafion 112 and Nafion 117 showed similar values of such parameters, suggesting that membrane thickness does not play a significant role in the H
2 crossover mechanism.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2007.02.027</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Backpressure ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Hydrogen crossover ; Permeability coefficient ; Proton exchange membrane (PEM) fuel cells ; Relative humidity ; Temperature</subject><ispartof>Journal of power sources, 2007-05, Vol.167 (1), p.25-31</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-ed806877eff2cafc4768aeac02293f24777e2c4c29257c3cf796e497c758ef363</citedby><cites>FETCH-LOGICAL-c414t-ed806877eff2cafc4768aeac02293f24777e2c4c29257c3cf796e497c758ef363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2007.02.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18676963$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Xuan</creatorcontrib><creatorcontrib>Zhang, Jianlu</creatorcontrib><creatorcontrib>Tang, Yanghua</creatorcontrib><creatorcontrib>Song, Chaojie</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Song, Datong</creatorcontrib><creatorcontrib>Zhang, Jiujun</creatorcontrib><title>Hydrogen crossover in high-temperature PEM fuel cells</title><title>Journal of power sources</title><description>In this paper, hydrogen crossover was measured in an environment of high-temperature proton exchange membrane (PEM) fuel cells using a steady-state electrochemical method at various temperatures (
T) (80–120
°C), backpressures (
P) (1.0–3.0
atm), and relative humidities (RH) (25–100%). An H
2 crossover model based on an MEA consisting of five layers – anode gas diffusion layer, anode catalyst layer, proton exchange membrane (Nafion 112 or Nafion 117), cathode catalyst layer, and cathode gas diffusion layer – was constructed to obtain an expression for H
2 permeability coefficients as a function of measured H
2 crossover rates and controlled H
2 partial pressures. The model analysis suggests that the dominant factor in the overall H
2 crossover is the step of H
2 diffusing through the PEM. The H
2 permeability coefficients as a function of
T,
P, and RH obtained in this study show that the increases in both
T and
P could increase the H
2 permeability coefficient at any given RH. However, the effect of RH on the permeability coefficient seems to be more complicated. The
T effect is much larger than that of
P and RH. Through experimental data simulation an equation was obtained to describe the
T dependencies of the H
2 permeability coefficient, based on which other parameters such as maximum permeability coefficients and activation energies for H
2 crossover through both Nafion 112 and 117 membranes were also evaluated. Both Nafion 112 and Nafion 117 showed similar values of such parameters, suggesting that membrane thickness does not play a significant role in the H
2 crossover mechanism.</description><subject>Applied sciences</subject><subject>Backpressure</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Hydrogen crossover</subject><subject>Permeability coefficient</subject><subject>Proton exchange membrane (PEM) fuel cells</subject><subject>Relative humidity</subject><subject>Temperature</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMIvoFzgluBH4k1uoKpQpCI4wNmynHXrKE2CnRT170lpEUekkfawMzs7Q8g1owmjTN5VSdW1X6EdfMIphYTyEXBCJiwHEXPIslMyoQLyGCAT5-QihIpSyhjQCckWu9K3K2wi49sQ2i36yDXR2q3WcY-bDr3uB4_R2_wlsgPWkcG6DpfkzOo64NVxTsnH4_x9toiXr0_Ps4dlbFKW9jGWOZU5AFrLjbYmBZlr1IZyXgjLUxhX3KSGFzwDI4yFQmJagIEsRyukmJLbw93Ot58Dhl5tXNh_oBtsh6BYSkVaFMVIlAfiTwqPVnXebbTfKUbVviVVqd-W1L4lRfkIGIU3RwcdjK6t141x4U-dS5CFFCPv_sDDMe7WoVfBOGwMls6j6VXZuv-svgEAPYEn</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Cheng, Xuan</creator><creator>Zhang, Jianlu</creator><creator>Tang, Yanghua</creator><creator>Song, Chaojie</creator><creator>Shen, Jun</creator><creator>Song, Datong</creator><creator>Zhang, Jiujun</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20070501</creationdate><title>Hydrogen crossover in high-temperature PEM fuel cells</title><author>Cheng, Xuan ; Zhang, Jianlu ; Tang, Yanghua ; Song, Chaojie ; Shen, Jun ; Song, Datong ; Zhang, Jiujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-ed806877eff2cafc4768aeac02293f24777e2c4c29257c3cf796e497c758ef363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Backpressure</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Hydrogen crossover</topic><topic>Permeability coefficient</topic><topic>Proton exchange membrane (PEM) fuel cells</topic><topic>Relative humidity</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xuan</creatorcontrib><creatorcontrib>Zhang, Jianlu</creatorcontrib><creatorcontrib>Tang, Yanghua</creatorcontrib><creatorcontrib>Song, Chaojie</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Song, Datong</creatorcontrib><creatorcontrib>Zhang, Jiujun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xuan</au><au>Zhang, Jianlu</au><au>Tang, Yanghua</au><au>Song, Chaojie</au><au>Shen, Jun</au><au>Song, Datong</au><au>Zhang, Jiujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen crossover in high-temperature PEM fuel cells</atitle><jtitle>Journal of power sources</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>167</volume><issue>1</issue><spage>25</spage><epage>31</epage><pages>25-31</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>In this paper, hydrogen crossover was measured in an environment of high-temperature proton exchange membrane (PEM) fuel cells using a steady-state electrochemical method at various temperatures (
T) (80–120
°C), backpressures (
P) (1.0–3.0
atm), and relative humidities (RH) (25–100%). An H
2 crossover model based on an MEA consisting of five layers – anode gas diffusion layer, anode catalyst layer, proton exchange membrane (Nafion 112 or Nafion 117), cathode catalyst layer, and cathode gas diffusion layer – was constructed to obtain an expression for H
2 permeability coefficients as a function of measured H
2 crossover rates and controlled H
2 partial pressures. The model analysis suggests that the dominant factor in the overall H
2 crossover is the step of H
2 diffusing through the PEM. The H
2 permeability coefficients as a function of
T,
P, and RH obtained in this study show that the increases in both
T and
P could increase the H
2 permeability coefficient at any given RH. However, the effect of RH on the permeability coefficient seems to be more complicated. The
T effect is much larger than that of
P and RH. Through experimental data simulation an equation was obtained to describe the
T dependencies of the H
2 permeability coefficient, based on which other parameters such as maximum permeability coefficients and activation energies for H
2 crossover through both Nafion 112 and 117 membranes were also evaluated. Both Nafion 112 and Nafion 117 showed similar values of such parameters, suggesting that membrane thickness does not play a significant role in the H
2 crossover mechanism.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2007.02.027</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2007-05, Vol.167 (1), p.25-31 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_14034999 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Backpressure Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Hydrogen crossover Permeability coefficient Proton exchange membrane (PEM) fuel cells Relative humidity Temperature |
title | Hydrogen crossover in high-temperature PEM fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20crossover%20in%20high-temperature%20PEM%20fuel%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Cheng,%20Xuan&rft.date=2007-05-01&rft.volume=167&rft.issue=1&rft.spage=25&rft.epage=31&rft.pages=25-31&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2007.02.027&rft_dat=%3Cproquest_cross%3E14034999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14034999&rft_id=info:pmid/&rft_els_id=S0378775307003539&rfr_iscdi=true |