A novel concept of QUADRISO particles – Part III: Applications to the plutonium–thorium fuel cycle
In the present study, a plutonium–thorium fuel cycle is investigated including the 233U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been...
Gespeichert in:
Veröffentlicht in: | Nucl. Energy 2009-03, Vol.51 (2), p.274-280 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | 2 |
container_start_page | 274 |
container_title | Nucl. Energy |
container_volume | 51 |
creator | Talamo, Alberto |
description | In the present study, a plutonium–thorium fuel cycle is investigated including the
233U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing
233U. The above configuration has been compared with a configuration where fissile (neptunium–plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the
233U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles. |
doi_str_mv | 10.1016/j.pnucene.2008.09.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_14021986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0149197008001224</els_id><sourcerecordid>14021986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-3a139e9d6202afc93cda3cae7189f022e782faba9e999eefc58c842f258ba3543</originalsourceid><addsrcrecordid>eNqFkc1OGzEQx_cAUlPaR0CykOCWrT-yH-4FRbTQlZCAQs6WmYwVRxt7sb1I3PoOvCFPUq8S9dqTbek3v5n5uyhOGS0ZZfW3bTm4EdBhySltSypLSqujYkbZQs6ZbOin4nOMW0pZw6pqVpglcf4VewLeAQ6JeEMeVssfv7vHOzLokCz0GMnHn3dyn1-k67rvZDkMvQWdrHeRJE_SBsnQj8k7O-4ymjY-5Bsx4yR-y4YvxbHRfcSvh_OkWF3_fLr6Nb-9u-mulrdzELJJc6GZkCjXNadcG5AC1lqAxoa10lDOsWm50c86M1IiGqhaaBfc8Kp91qJaiJPibO_1MVkVwSaETV7NISSVA2K8bTJ0sYeG4F9GjEntbATse-3Qj1GxBeVMtnUGqz0IwccY0Kgh2J0Ob1k12Wq1VYe41RS3olLluHPd-aGBjqB7E7QDG_8Vc8ZFLRqZucs9hzmSV4thmhjzP6xtmAZee_ufTn8By7ecTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14021986</pqid></control><display><type>article</type><title>A novel concept of QUADRISO particles – Part III: Applications to the plutonium–thorium fuel cycle</title><source>Elsevier ScienceDirect Journals</source><creator>Talamo, Alberto</creator><creatorcontrib>Talamo, Alberto ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>In the present study, a plutonium–thorium fuel cycle is investigated including the
233U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing
233U. The above configuration has been compared with a configuration where fissile (neptunium–plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the
233U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.</description><identifier>ISSN: 0149-1970</identifier><identifier>DOI: 10.1016/j.pnucene.2008.09.005</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>ANL ; Applied sciences ; BURNABLE POISONS ; CONFIGURATION ; Energy ; Energy. Thermal use of fuels ; EUROPIUM OXIDES ; Exact sciences and technology ; FISSION ; Fission nuclear power plants ; FUEL CYCLE ; FUEL PARTICLES ; Fuels ; GT-MHR ; Installations for energy generation and conversion: thermal and electrical energy ; KERNELS ; MCB ; NEUTRONS ; NUCLEAR FUEL CYCLE AND FUEL MATERIALS ; Nuclear fuels ; OXIDES ; Preparation and processing of nuclear fuels ; PRODUCTION ; QUADRISO ; SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS ; SPENT FUELS ; THORIUM ; THORIUM OXIDES ; WATER</subject><ispartof>Nucl. Energy, 2009-03, Vol.51 (2), p.274-280</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-3a139e9d6202afc93cda3cae7189f022e782faba9e999eefc58c842f258ba3543</citedby><cites>FETCH-LOGICAL-c397t-3a139e9d6202afc93cda3cae7189f022e782faba9e999eefc58c842f258ba3543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pnucene.2008.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21236379$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1011287$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Talamo, Alberto</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>A novel concept of QUADRISO particles – Part III: Applications to the plutonium–thorium fuel cycle</title><title>Nucl. Energy</title><description>In the present study, a plutonium–thorium fuel cycle is investigated including the
233U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing
233U. The above configuration has been compared with a configuration where fissile (neptunium–plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the
233U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.</description><subject>ANL</subject><subject>Applied sciences</subject><subject>BURNABLE POISONS</subject><subject>CONFIGURATION</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>EUROPIUM OXIDES</subject><subject>Exact sciences and technology</subject><subject>FISSION</subject><subject>Fission nuclear power plants</subject><subject>FUEL CYCLE</subject><subject>FUEL PARTICLES</subject><subject>Fuels</subject><subject>GT-MHR</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>KERNELS</subject><subject>MCB</subject><subject>NEUTRONS</subject><subject>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</subject><subject>Nuclear fuels</subject><subject>OXIDES</subject><subject>Preparation and processing of nuclear fuels</subject><subject>PRODUCTION</subject><subject>QUADRISO</subject><subject>SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS</subject><subject>SPENT FUELS</subject><subject>THORIUM</subject><subject>THORIUM OXIDES</subject><subject>WATER</subject><issn>0149-1970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OGzEQx_cAUlPaR0CykOCWrT-yH-4FRbTQlZCAQs6WmYwVRxt7sb1I3PoOvCFPUq8S9dqTbek3v5n5uyhOGS0ZZfW3bTm4EdBhySltSypLSqujYkbZQs6ZbOin4nOMW0pZw6pqVpglcf4VewLeAQ6JeEMeVssfv7vHOzLokCz0GMnHn3dyn1-k67rvZDkMvQWdrHeRJE_SBsnQj8k7O-4ymjY-5Bsx4yR-y4YvxbHRfcSvh_OkWF3_fLr6Nb-9u-mulrdzELJJc6GZkCjXNadcG5AC1lqAxoa10lDOsWm50c86M1IiGqhaaBfc8Kp91qJaiJPibO_1MVkVwSaETV7NISSVA2K8bTJ0sYeG4F9GjEntbATse-3Qj1GxBeVMtnUGqz0IwccY0Kgh2J0Ob1k12Wq1VYe41RS3olLluHPd-aGBjqB7E7QDG_8Vc8ZFLRqZucs9hzmSV4thmhjzP6xtmAZee_ufTn8By7ecTw</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Talamo, Alberto</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20090301</creationdate><title>A novel concept of QUADRISO particles – Part III: Applications to the plutonium–thorium fuel cycle</title><author>Talamo, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-3a139e9d6202afc93cda3cae7189f022e782faba9e999eefc58c842f258ba3543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ANL</topic><topic>Applied sciences</topic><topic>BURNABLE POISONS</topic><topic>CONFIGURATION</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>EUROPIUM OXIDES</topic><topic>Exact sciences and technology</topic><topic>FISSION</topic><topic>Fission nuclear power plants</topic><topic>FUEL CYCLE</topic><topic>FUEL PARTICLES</topic><topic>Fuels</topic><topic>GT-MHR</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>KERNELS</topic><topic>MCB</topic><topic>NEUTRONS</topic><topic>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</topic><topic>Nuclear fuels</topic><topic>OXIDES</topic><topic>Preparation and processing of nuclear fuels</topic><topic>PRODUCTION</topic><topic>QUADRISO</topic><topic>SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS</topic><topic>SPENT FUELS</topic><topic>THORIUM</topic><topic>THORIUM OXIDES</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talamo, Alberto</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Nucl. Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talamo, Alberto</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel concept of QUADRISO particles – Part III: Applications to the plutonium–thorium fuel cycle</atitle><jtitle>Nucl. Energy</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>51</volume><issue>2</issue><spage>274</spage><epage>280</epage><pages>274-280</pages><issn>0149-1970</issn><abstract>In the present study, a plutonium–thorium fuel cycle is investigated including the
233U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing
233U. The above configuration has been compared with a configuration where fissile (neptunium–plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the
233U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.pnucene.2008.09.005</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0149-1970 |
ispartof | Nucl. Energy, 2009-03, Vol.51 (2), p.274-280 |
issn | 0149-1970 |
language | eng |
recordid | cdi_proquest_miscellaneous_14021986 |
source | Elsevier ScienceDirect Journals |
subjects | ANL Applied sciences BURNABLE POISONS CONFIGURATION Energy Energy. Thermal use of fuels EUROPIUM OXIDES Exact sciences and technology FISSION Fission nuclear power plants FUEL CYCLE FUEL PARTICLES Fuels GT-MHR Installations for energy generation and conversion: thermal and electrical energy KERNELS MCB NEUTRONS NUCLEAR FUEL CYCLE AND FUEL MATERIALS Nuclear fuels OXIDES Preparation and processing of nuclear fuels PRODUCTION QUADRISO SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS SPENT FUELS THORIUM THORIUM OXIDES WATER |
title | A novel concept of QUADRISO particles – Part III: Applications to the plutonium–thorium fuel cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20concept%20of%20QUADRISO%20particles%20%E2%80%93%20Part%20III:%20Applications%20to%20the%20plutonium%E2%80%93thorium%20fuel%20cycle&rft.jtitle=Nucl.%20Energy&rft.au=Talamo,%20Alberto&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2009-03-01&rft.volume=51&rft.issue=2&rft.spage=274&rft.epage=280&rft.pages=274-280&rft.issn=0149-1970&rft_id=info:doi/10.1016/j.pnucene.2008.09.005&rft_dat=%3Cproquest_osti_%3E14021986%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14021986&rft_id=info:pmid/&rft_els_id=S0149197008001224&rfr_iscdi=true |