A novel concept of QUADRISO particles – Part III: Applications to the plutonium–thorium fuel cycle

In the present study, a plutonium–thorium fuel cycle is investigated including the 233U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucl. Energy 2009-03, Vol.51 (2), p.274-280
1. Verfasser: Talamo, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 2
container_start_page 274
container_title Nucl. Energy
container_volume 51
creator Talamo, Alberto
description In the present study, a plutonium–thorium fuel cycle is investigated including the 233U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing 233U. The above configuration has been compared with a configuration where fissile (neptunium–plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the 233U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.
doi_str_mv 10.1016/j.pnucene.2008.09.005
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_14021986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0149197008001224</els_id><sourcerecordid>14021986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-3a139e9d6202afc93cda3cae7189f022e782faba9e999eefc58c842f258ba3543</originalsourceid><addsrcrecordid>eNqFkc1OGzEQx_cAUlPaR0CykOCWrT-yH-4FRbTQlZCAQs6WmYwVRxt7sb1I3PoOvCFPUq8S9dqTbek3v5n5uyhOGS0ZZfW3bTm4EdBhySltSypLSqujYkbZQs6ZbOin4nOMW0pZw6pqVpglcf4VewLeAQ6JeEMeVssfv7vHOzLokCz0GMnHn3dyn1-k67rvZDkMvQWdrHeRJE_SBsnQj8k7O-4ymjY-5Bsx4yR-y4YvxbHRfcSvh_OkWF3_fLr6Nb-9u-mulrdzELJJc6GZkCjXNadcG5AC1lqAxoa10lDOsWm50c86M1IiGqhaaBfc8Kp91qJaiJPibO_1MVkVwSaETV7NISSVA2K8bTJ0sYeG4F9GjEntbATse-3Qj1GxBeVMtnUGqz0IwccY0Kgh2J0Ob1k12Wq1VYe41RS3olLluHPd-aGBjqB7E7QDG_8Vc8ZFLRqZucs9hzmSV4thmhjzP6xtmAZee_ufTn8By7ecTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14021986</pqid></control><display><type>article</type><title>A novel concept of QUADRISO particles – Part III: Applications to the plutonium–thorium fuel cycle</title><source>Elsevier ScienceDirect Journals</source><creator>Talamo, Alberto</creator><creatorcontrib>Talamo, Alberto ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>In the present study, a plutonium–thorium fuel cycle is investigated including the 233U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing 233U. The above configuration has been compared with a configuration where fissile (neptunium–plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the 233U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.</description><identifier>ISSN: 0149-1970</identifier><identifier>DOI: 10.1016/j.pnucene.2008.09.005</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>ANL ; Applied sciences ; BURNABLE POISONS ; CONFIGURATION ; Energy ; Energy. Thermal use of fuels ; EUROPIUM OXIDES ; Exact sciences and technology ; FISSION ; Fission nuclear power plants ; FUEL CYCLE ; FUEL PARTICLES ; Fuels ; GT-MHR ; Installations for energy generation and conversion: thermal and electrical energy ; KERNELS ; MCB ; NEUTRONS ; NUCLEAR FUEL CYCLE AND FUEL MATERIALS ; Nuclear fuels ; OXIDES ; Preparation and processing of nuclear fuels ; PRODUCTION ; QUADRISO ; SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS ; SPENT FUELS ; THORIUM ; THORIUM OXIDES ; WATER</subject><ispartof>Nucl. Energy, 2009-03, Vol.51 (2), p.274-280</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-3a139e9d6202afc93cda3cae7189f022e782faba9e999eefc58c842f258ba3543</citedby><cites>FETCH-LOGICAL-c397t-3a139e9d6202afc93cda3cae7189f022e782faba9e999eefc58c842f258ba3543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pnucene.2008.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21236379$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1011287$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Talamo, Alberto</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>A novel concept of QUADRISO particles – Part III: Applications to the plutonium–thorium fuel cycle</title><title>Nucl. Energy</title><description>In the present study, a plutonium–thorium fuel cycle is investigated including the 233U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing 233U. The above configuration has been compared with a configuration where fissile (neptunium–plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the 233U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.</description><subject>ANL</subject><subject>Applied sciences</subject><subject>BURNABLE POISONS</subject><subject>CONFIGURATION</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>EUROPIUM OXIDES</subject><subject>Exact sciences and technology</subject><subject>FISSION</subject><subject>Fission nuclear power plants</subject><subject>FUEL CYCLE</subject><subject>FUEL PARTICLES</subject><subject>Fuels</subject><subject>GT-MHR</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>KERNELS</subject><subject>MCB</subject><subject>NEUTRONS</subject><subject>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</subject><subject>Nuclear fuels</subject><subject>OXIDES</subject><subject>Preparation and processing of nuclear fuels</subject><subject>PRODUCTION</subject><subject>QUADRISO</subject><subject>SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS</subject><subject>SPENT FUELS</subject><subject>THORIUM</subject><subject>THORIUM OXIDES</subject><subject>WATER</subject><issn>0149-1970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OGzEQx_cAUlPaR0CykOCWrT-yH-4FRbTQlZCAQs6WmYwVRxt7sb1I3PoOvCFPUq8S9dqTbek3v5n5uyhOGS0ZZfW3bTm4EdBhySltSypLSqujYkbZQs6ZbOin4nOMW0pZw6pqVpglcf4VewLeAQ6JeEMeVssfv7vHOzLokCz0GMnHn3dyn1-k67rvZDkMvQWdrHeRJE_SBsnQj8k7O-4ymjY-5Bsx4yR-y4YvxbHRfcSvh_OkWF3_fLr6Nb-9u-mulrdzELJJc6GZkCjXNadcG5AC1lqAxoa10lDOsWm50c86M1IiGqhaaBfc8Kp91qJaiJPibO_1MVkVwSaETV7NISSVA2K8bTJ0sYeG4F9GjEntbATse-3Qj1GxBeVMtnUGqz0IwccY0Kgh2J0Ob1k12Wq1VYe41RS3olLluHPd-aGBjqB7E7QDG_8Vc8ZFLRqZucs9hzmSV4thmhjzP6xtmAZee_ufTn8By7ecTw</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Talamo, Alberto</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20090301</creationdate><title>A novel concept of QUADRISO particles – Part III: Applications to the plutonium–thorium fuel cycle</title><author>Talamo, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-3a139e9d6202afc93cda3cae7189f022e782faba9e999eefc58c842f258ba3543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ANL</topic><topic>Applied sciences</topic><topic>BURNABLE POISONS</topic><topic>CONFIGURATION</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>EUROPIUM OXIDES</topic><topic>Exact sciences and technology</topic><topic>FISSION</topic><topic>Fission nuclear power plants</topic><topic>FUEL CYCLE</topic><topic>FUEL PARTICLES</topic><topic>Fuels</topic><topic>GT-MHR</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>KERNELS</topic><topic>MCB</topic><topic>NEUTRONS</topic><topic>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</topic><topic>Nuclear fuels</topic><topic>OXIDES</topic><topic>Preparation and processing of nuclear fuels</topic><topic>PRODUCTION</topic><topic>QUADRISO</topic><topic>SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS</topic><topic>SPENT FUELS</topic><topic>THORIUM</topic><topic>THORIUM OXIDES</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talamo, Alberto</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Nucl. Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talamo, Alberto</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel concept of QUADRISO particles – Part III: Applications to the plutonium–thorium fuel cycle</atitle><jtitle>Nucl. Energy</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>51</volume><issue>2</issue><spage>274</spage><epage>280</epage><pages>274-280</pages><issn>0149-1970</issn><abstract>In the present study, a plutonium–thorium fuel cycle is investigated including the 233U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing 233U. The above configuration has been compared with a configuration where fissile (neptunium–plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the 233U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.pnucene.2008.09.005</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0149-1970
ispartof Nucl. Energy, 2009-03, Vol.51 (2), p.274-280
issn 0149-1970
language eng
recordid cdi_proquest_miscellaneous_14021986
source Elsevier ScienceDirect Journals
subjects ANL
Applied sciences
BURNABLE POISONS
CONFIGURATION
Energy
Energy. Thermal use of fuels
EUROPIUM OXIDES
Exact sciences and technology
FISSION
Fission nuclear power plants
FUEL CYCLE
FUEL PARTICLES
Fuels
GT-MHR
Installations for energy generation and conversion: thermal and electrical energy
KERNELS
MCB
NEUTRONS
NUCLEAR FUEL CYCLE AND FUEL MATERIALS
Nuclear fuels
OXIDES
Preparation and processing of nuclear fuels
PRODUCTION
QUADRISO
SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS
SPENT FUELS
THORIUM
THORIUM OXIDES
WATER
title A novel concept of QUADRISO particles – Part III: Applications to the plutonium–thorium fuel cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20concept%20of%20QUADRISO%20particles%20%E2%80%93%20Part%20III:%20Applications%20to%20the%20plutonium%E2%80%93thorium%20fuel%20cycle&rft.jtitle=Nucl.%20Energy&rft.au=Talamo,%20Alberto&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2009-03-01&rft.volume=51&rft.issue=2&rft.spage=274&rft.epage=280&rft.pages=274-280&rft.issn=0149-1970&rft_id=info:doi/10.1016/j.pnucene.2008.09.005&rft_dat=%3Cproquest_osti_%3E14021986%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14021986&rft_id=info:pmid/&rft_els_id=S0149197008001224&rfr_iscdi=true