PI3K/mTOR inhibitor PF-04691502 antitumor activity is enhanced with induction of wild-type TP53 in human xenograft and murine knockout models of head and neck cancer

Phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway activation is often associated with altered expression or mutations of PIK3CA, TP53/p73, PTEN, and TGF-β receptors (TGFBR) in head and neck squamous cell carcinomas (HNSCC). However, little is known about how these alterat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2013-07, Vol.19 (14), p.3808-3819
Hauptverfasser: Herzog, Amanda, Bian, Yansong, Vander Broek, Robert, Hall, Bradford, Coupar, Jamie, Cheng, Hui, Sowers, Anastasia L, Cook, John D, Mitchell, James B, Chen, Zhong, Kulkarni, Ashok B, Van Waes, Carter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway activation is often associated with altered expression or mutations of PIK3CA, TP53/p73, PTEN, and TGF-β receptors (TGFBR) in head and neck squamous cell carcinomas (HNSCC). However, little is known about how these alterations affect response to PI3K/mTOR-targeted agents. In this preclinical study, PI3K/Akt/mTOR signaling was characterized in nine HNSCC (UM-SCC) cell lines and human oral keratinocytes. We investigated the molecular and anticancer effects of dual PI3K/mTOR inhibitor PF-04691502(PF-502) in UM-SCC expressing PIK3CA with decreased wild-type TP53, mutant TP53-/+ mutantTGFBR2, and in HNSCC of a conditional Pten/Tgfbr1 double knockout mouse model displaying PI3K/Akt/mTOR activation. UM-SCC showed increased PIK3CA expression and Akt/mTOR activation, and PF-502 inhibited PI3K/mTORC1/2 targets. In human HNSCC expressing PIK3CA and decreased wtTP53 and p73, PF-502 reciprocally enhanced TP53/p73 expression and growth inhibition, which was partially reversible by p53 inhibitor pifithrin-α. Most UM-SCC with wtTP53 exhibited a lower IC50 than those with mtTP53 status. PF-502 blocked growth in G0-G1 and increased apoptotic sub-G0 DNA. PF-502 suppressed tumorigenesis and showed combinatorial activity with radiation in a wild-type TP53 UM-SCC xenograft model. PF-502 also significantly delayed HNSCC tumorigenesis and prolonged survival of Pten/Tgfbr1-deficient mice. Significant inhibition of p-Akt, p-4EBP1, p-S6, and Ki67, as well as increased p53 and TUNEL were observed in tumor specimens. PI3K-mTOR inhibition can enhance TP53/p73 expression and significantly inhibit tumor growth alone or when combined with radiation in HNSCC with wild-type TP53. PIK3CA, TP53/p73, PTEN, and TGF-β alterations are potential modifiers of response and merit investigation in future clinical trials with PI3K-mTOR inhibitors.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-12-2716