In Situ Electron Energy-Loss Spectroscopy in Liquids

In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microsc. Microanal 2013-08, Vol.19 (4), p.1027-1035
Hauptverfasser: Holtz, Megan E., Yu, Yingchao, Gao, Jie, Abruña, Héctor D., Muller, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1035
container_issue 4
container_start_page 1027
container_title Microsc. Microanal
container_volume 19
creator Holtz, Megan E.
Yu, Yingchao
Gao, Jie
Abruña, Héctor D.
Muller, David A.
description In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS in the study of chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap, and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in an aqueous solution. The potential for the use of valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insights into the local electronic structure of nanoparticles and chemical reactions.
doi_str_mv 10.1017/S1431927613001505
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1400400958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1431927613001505</cupid><sourcerecordid>3018009061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-86c414610d73164fa7185ac9e793374776bc57ed869dc4e82f24784dcaf32e233</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMojo7-ADdSdOOmmts8u5Rh1IGCi9F16KTpmKFNO027mH9v5qGIIgQSTr577r0HoSvA94BBPMyBEkgTwYFgDAyzI3QWJBZLAHa8e0O8_R-hc-9XGGOCBT9Fo4SIBHgKZ4jOXDS3_RBNK6P7rnHR1JluuYmzxvto3u5Er5t2E1kXZXY92MJfoJMyr7y5PNxj9P40fZu8xNnr82zymMWact7HkmsKlAMuBAFOy1yAZLlOjUgJEVQIvtBMmELytNDUyKRMqJC00HlJEpMQMkY3e9_G91Z5bXujP3TjXJhKAXDMAAfobg-1XbMejO9Vbb02VZU70wxeAcU4nJTJgN7-QlfN0LmwggKSpkxImdBAwZ7SYXPfmVK1na3zbqMAq23u6k_uoeb64DwsalN8V3wFHQByMM3rRWeLpfnR-1_bT4m-iJo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399578824</pqid></control><display><type>article</type><title>In Situ Electron Energy-Loss Spectroscopy in Liquids</title><source>Cambridge Journals Online</source><creator>Holtz, Megan E. ; Yu, Yingchao ; Gao, Jie ; Abruña, Héctor D. ; Muller, David A.</creator><creatorcontrib>Holtz, Megan E. ; Yu, Yingchao ; Gao, Jie ; Abruña, Héctor D. ; Muller, David A. ; Energy Frontier Research Centers (EFRC) ; Energy Materials Center at Cornell (EMC2)</creatorcontrib><description>In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS in the study of chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap, and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in an aqueous solution. The potential for the use of valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insights into the local electronic structure of nanoparticles and chemical reactions.</description><identifier>ISSN: 1431-9276</identifier><identifier>EISSN: 1435-8115</identifier><identifier>DOI: 10.1017/S1431927613001505</identifier><identifier>PMID: 23721691</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>catalysis (homogeneous), catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, defects, charge transport, membrane, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Chemical reactions ; Copper ; Electrons ; Energy ; Materials Applications ; Nanoparticles ; Sensors ; Silicon nitride ; Spectroscopy ; Spectrum analysis</subject><ispartof>Microsc. Microanal, 2013-08, Vol.19 (4), p.1027-1035</ispartof><rights>Copyright © Microscopy Society of America 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-86c414610d73164fa7185ac9e793374776bc57ed869dc4e82f24784dcaf32e233</citedby><cites>FETCH-LOGICAL-c466t-86c414610d73164fa7185ac9e793374776bc57ed869dc4e82f24784dcaf32e233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1431927613001505/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23721691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1160510$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Holtz, Megan E.</creatorcontrib><creatorcontrib>Yu, Yingchao</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Abruña, Héctor D.</creatorcontrib><creatorcontrib>Muller, David A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Energy Materials Center at Cornell (EMC2)</creatorcontrib><title>In Situ Electron Energy-Loss Spectroscopy in Liquids</title><title>Microsc. Microanal</title><addtitle>Microsc Microanal</addtitle><description>In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS in the study of chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap, and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in an aqueous solution. The potential for the use of valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insights into the local electronic structure of nanoparticles and chemical reactions.</description><subject>catalysis (homogeneous), catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, defects, charge transport, membrane, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Chemical reactions</subject><subject>Copper</subject><subject>Electrons</subject><subject>Energy</subject><subject>Materials Applications</subject><subject>Nanoparticles</subject><subject>Sensors</subject><subject>Silicon nitride</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1431-9276</issn><issn>1435-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMojo7-ADdSdOOmmts8u5Rh1IGCi9F16KTpmKFNO027mH9v5qGIIgQSTr577r0HoSvA94BBPMyBEkgTwYFgDAyzI3QWJBZLAHa8e0O8_R-hc-9XGGOCBT9Fo4SIBHgKZ4jOXDS3_RBNK6P7rnHR1JluuYmzxvto3u5Er5t2E1kXZXY92MJfoJMyr7y5PNxj9P40fZu8xNnr82zymMWact7HkmsKlAMuBAFOy1yAZLlOjUgJEVQIvtBMmELytNDUyKRMqJC00HlJEpMQMkY3e9_G91Z5bXujP3TjXJhKAXDMAAfobg-1XbMejO9Vbb02VZU70wxeAcU4nJTJgN7-QlfN0LmwggKSpkxImdBAwZ7SYXPfmVK1na3zbqMAq23u6k_uoeb64DwsalN8V3wFHQByMM3rRWeLpfnR-1_bT4m-iJo</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Holtz, Megan E.</creator><creator>Yu, Yingchao</creator><creator>Gao, Jie</creator><creator>Abruña, Héctor D.</creator><creator>Muller, David A.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20130801</creationdate><title>In Situ Electron Energy-Loss Spectroscopy in Liquids</title><author>Holtz, Megan E. ; Yu, Yingchao ; Gao, Jie ; Abruña, Héctor D. ; Muller, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-86c414610d73164fa7185ac9e793374776bc57ed869dc4e82f24784dcaf32e233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>catalysis (homogeneous), catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, defects, charge transport, membrane, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Chemical reactions</topic><topic>Copper</topic><topic>Electrons</topic><topic>Energy</topic><topic>Materials Applications</topic><topic>Nanoparticles</topic><topic>Sensors</topic><topic>Silicon nitride</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holtz, Megan E.</creatorcontrib><creatorcontrib>Yu, Yingchao</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Abruña, Héctor D.</creatorcontrib><creatorcontrib>Muller, David A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Energy Materials Center at Cornell (EMC2)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Microsc. Microanal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holtz, Megan E.</au><au>Yu, Yingchao</au><au>Gao, Jie</au><au>Abruña, Héctor D.</au><au>Muller, David A.</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Energy Materials Center at Cornell (EMC2)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Electron Energy-Loss Spectroscopy in Liquids</atitle><jtitle>Microsc. Microanal</jtitle><addtitle>Microsc Microanal</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>19</volume><issue>4</issue><spage>1027</spage><epage>1035</epage><pages>1027-1035</pages><issn>1431-9276</issn><eissn>1435-8115</eissn><abstract>In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS in the study of chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap, and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in an aqueous solution. The potential for the use of valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insights into the local electronic structure of nanoparticles and chemical reactions.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>23721691</pmid><doi>10.1017/S1431927613001505</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1431-9276
ispartof Microsc. Microanal, 2013-08, Vol.19 (4), p.1027-1035
issn 1431-9276
1435-8115
language eng
recordid cdi_proquest_miscellaneous_1400400958
source Cambridge Journals Online
subjects catalysis (homogeneous), catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, defects, charge transport, membrane, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
Chemical reactions
Copper
Electrons
Energy
Materials Applications
Nanoparticles
Sensors
Silicon nitride
Spectroscopy
Spectrum analysis
title In Situ Electron Energy-Loss Spectroscopy in Liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Electron%20Energy-Loss%20Spectroscopy%20in%20Liquids&rft.jtitle=Microsc.%20Microanal&rft.au=Holtz,%20Megan%20E.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2013-08-01&rft.volume=19&rft.issue=4&rft.spage=1027&rft.epage=1035&rft.pages=1027-1035&rft.issn=1431-9276&rft.eissn=1435-8115&rft_id=info:doi/10.1017/S1431927613001505&rft_dat=%3Cproquest_osti_%3E3018009061%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1399578824&rft_id=info:pmid/23721691&rft_cupid=10_1017_S1431927613001505&rfr_iscdi=true