High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation

Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2010-02, Vol.4 (1), p.39-48
Hauptverfasser: Langlois, P.J., Demosthenous, A., Pachnis, I., Donaldson, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 39
container_title IEEE transactions on biomedical circuits and systems
container_volume 4
creator Langlois, P.J.
Demosthenous, A.
Pachnis, I.
Donaldson, N.
description Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywhere within the range of the power rails, which may be up to 24 V. The first circuit is used for stimulation only. It uses a floating depletion transistor to enable continuous discharge of the electrodes, except when stimulating, without using power. The second circuit also allows neural signals to be recorded from the same tripole. It uses a modified floating complementary metal-oxide semiconductor (CMOS) discharge switch capable of operating over a range beyond the gate-to-source voltage limits of its transistors. It remains off for long periods using no power while recording. A 0.6-¿m silicon-on-insulator CMOS technology has been used. The measured performance of the circuits has been verified using multiple tripoles in saline.
doi_str_mv 10.1109/TBCAS.2009.2034138
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1400400590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5356163</ieee_id><sourcerecordid>2543238451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-817141b06ee6f81286e2f59c5da42704df25fd3860dd013a57d5b344112d2ce63</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoh_wB0BCUS_lkuLxt49lS2mlikW0wDHyxpNsqmy8OM4i_j0Ou91DD1QazYw8z7waWW-WvQFyBkDMh7uPs_PbM0qISYlxYPpZdgiGk8IYQ55PPaMFF1wcZEfDcE-IkNTQl9kBZVowRvRhtrlqm2Xx1f_GkF_3EZtgI7r8NrarsbPRh3w-xvUY04ttcMh_tnGZX3bexrZv8ot2qJY2NJjPN0nAprHD_IfvJjj_ZvuU66TxBcMG96Kt719lL2rbDfh6V4-z75ef7mZXxc388_Xs_KaoOFex0KCAw4JIRFlroFoirYWphLOcKsJdTUXtmJbEOQLMCuXEgnEOQB2tULLj7HSruw7-14hDLFfpZOw626Mfh1JLpTgzlD5JKi4p1QxUIt__lwSpgE1386dRTkgKYUhCTx6h934Mffqc0gAYrSSDBNEtVAU_DAHrch3alQ1_SiDl5InynyfKyRPlzhNp6d1OeVys0O1XHkyQgLdboEXE_VgwIUEy9hd8nbit</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911987631</pqid></control><display><type>article</type><title>High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation</title><source>IEEE Electronic Library (IEL)</source><creator>Langlois, P.J. ; Demosthenous, A. ; Pachnis, I. ; Donaldson, N.</creator><creatorcontrib>Langlois, P.J. ; Demosthenous, A. ; Pachnis, I. ; Donaldson, N.</creatorcontrib><description>Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywhere within the range of the power rails, which may be up to 24 V. The first circuit is used for stimulation only. It uses a floating depletion transistor to enable continuous discharge of the electrodes, except when stimulating, without using power. The second circuit also allows neural signals to be recorded from the same tripole. It uses a modified floating complementary metal-oxide semiconductor (CMOS) discharge switch capable of operating over a range beyond the gate-to-source voltage limits of its transistors. It remains off for long periods using no power while recording. A 0.6-¿m silicon-on-insulator CMOS technology has been used. The measured performance of the circuits has been verified using multiple tripoles in saline.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2009.2034138</identifier><identifier>PMID: 23853308</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Circuits ; CMOS technology ; Complementary metal-oxide semiconductor (CMOS) switch ; depletion transistor ; Discharge ; Electric potential ; Electrodes ; floating discharge ; high-power stimulator ; implantable circuits ; MOS devices ; neural recording ; passive discharge ; Pulse generation ; Rails ; Semiconductors ; Sensors ; Silicon on insulator technology ; silicon-on-insulator (SOI) ; Space vector pulse width modulation ; Stimulation ; Transistors ; Voltage</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2010-02, Vol.4 (1), p.39-48</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-817141b06ee6f81286e2f59c5da42704df25fd3860dd013a57d5b344112d2ce63</citedby><cites>FETCH-LOGICAL-c447t-817141b06ee6f81286e2f59c5da42704df25fd3860dd013a57d5b344112d2ce63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5356163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5356163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23853308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Langlois, P.J.</creatorcontrib><creatorcontrib>Demosthenous, A.</creatorcontrib><creatorcontrib>Pachnis, I.</creatorcontrib><creatorcontrib>Donaldson, N.</creatorcontrib><title>High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywhere within the range of the power rails, which may be up to 24 V. The first circuit is used for stimulation only. It uses a floating depletion transistor to enable continuous discharge of the electrodes, except when stimulating, without using power. The second circuit also allows neural signals to be recorded from the same tripole. It uses a modified floating complementary metal-oxide semiconductor (CMOS) discharge switch capable of operating over a range beyond the gate-to-source voltage limits of its transistors. It remains off for long periods using no power while recording. A 0.6-¿m silicon-on-insulator CMOS technology has been used. The measured performance of the circuits has been verified using multiple tripoles in saline.</description><subject>Circuits</subject><subject>CMOS technology</subject><subject>Complementary metal-oxide semiconductor (CMOS) switch</subject><subject>depletion transistor</subject><subject>Discharge</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>floating discharge</subject><subject>high-power stimulator</subject><subject>implantable circuits</subject><subject>MOS devices</subject><subject>neural recording</subject><subject>passive discharge</subject><subject>Pulse generation</subject><subject>Rails</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Silicon on insulator technology</subject><subject>silicon-on-insulator (SOI)</subject><subject>Space vector pulse width modulation</subject><subject>Stimulation</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkk1v1DAQhiMEoh_wB0BCUS_lkuLxt49lS2mlikW0wDHyxpNsqmy8OM4i_j0Ou91DD1QazYw8z7waWW-WvQFyBkDMh7uPs_PbM0qISYlxYPpZdgiGk8IYQ55PPaMFF1wcZEfDcE-IkNTQl9kBZVowRvRhtrlqm2Xx1f_GkF_3EZtgI7r8NrarsbPRh3w-xvUY04ttcMh_tnGZX3bexrZv8ot2qJY2NJjPN0nAprHD_IfvJjj_ZvuU66TxBcMG96Kt719lL2rbDfh6V4-z75ef7mZXxc388_Xs_KaoOFex0KCAw4JIRFlroFoirYWphLOcKsJdTUXtmJbEOQLMCuXEgnEOQB2tULLj7HSruw7-14hDLFfpZOw626Mfh1JLpTgzlD5JKi4p1QxUIt__lwSpgE1386dRTkgKYUhCTx6h934Mffqc0gAYrSSDBNEtVAU_DAHrch3alQ1_SiDl5InynyfKyRPlzhNp6d1OeVys0O1XHkyQgLdboEXE_VgwIUEy9hd8nbit</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Langlois, P.J.</creator><creator>Demosthenous, A.</creator><creator>Pachnis, I.</creator><creator>Donaldson, N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201002</creationdate><title>High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation</title><author>Langlois, P.J. ; Demosthenous, A. ; Pachnis, I. ; Donaldson, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-817141b06ee6f81286e2f59c5da42704df25fd3860dd013a57d5b344112d2ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Circuits</topic><topic>CMOS technology</topic><topic>Complementary metal-oxide semiconductor (CMOS) switch</topic><topic>depletion transistor</topic><topic>Discharge</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>floating discharge</topic><topic>high-power stimulator</topic><topic>implantable circuits</topic><topic>MOS devices</topic><topic>neural recording</topic><topic>passive discharge</topic><topic>Pulse generation</topic><topic>Rails</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Silicon on insulator technology</topic><topic>silicon-on-insulator (SOI)</topic><topic>Space vector pulse width modulation</topic><topic>Stimulation</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langlois, P.J.</creatorcontrib><creatorcontrib>Demosthenous, A.</creatorcontrib><creatorcontrib>Pachnis, I.</creatorcontrib><creatorcontrib>Donaldson, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Langlois, P.J.</au><au>Demosthenous, A.</au><au>Pachnis, I.</au><au>Donaldson, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2010-02</date><risdate>2010</risdate><volume>4</volume><issue>1</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywhere within the range of the power rails, which may be up to 24 V. The first circuit is used for stimulation only. It uses a floating depletion transistor to enable continuous discharge of the electrodes, except when stimulating, without using power. The second circuit also allows neural signals to be recorded from the same tripole. It uses a modified floating complementary metal-oxide semiconductor (CMOS) discharge switch capable of operating over a range beyond the gate-to-source voltage limits of its transistors. It remains off for long periods using no power while recording. A 0.6-¿m silicon-on-insulator CMOS technology has been used. The measured performance of the circuits has been verified using multiple tripoles in saline.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23853308</pmid><doi>10.1109/TBCAS.2009.2034138</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2010-02, Vol.4 (1), p.39-48
issn 1932-4545
1940-9990
language eng
recordid cdi_proquest_miscellaneous_1400400590
source IEEE Electronic Library (IEL)
subjects Circuits
CMOS technology
Complementary metal-oxide semiconductor (CMOS) switch
depletion transistor
Discharge
Electric potential
Electrodes
floating discharge
high-power stimulator
implantable circuits
MOS devices
neural recording
passive discharge
Pulse generation
Rails
Semiconductors
Sensors
Silicon on insulator technology
silicon-on-insulator (SOI)
Space vector pulse width modulation
Stimulation
Transistors
Voltage
title High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Power%20Integrated%20Stimulator%20Output%20Stages%20With%20Floating%20Discharge%20Over%20a%20Wide%20Voltage%20Range%20for%20Nerve%20Stimulation&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Langlois,%20P.J.&rft.date=2010-02&rft.volume=4&rft.issue=1&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2009.2034138&rft_dat=%3Cproquest_RIE%3E2543238451%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911987631&rft_id=info:pmid/23853308&rft_ieee_id=5356163&rfr_iscdi=true