High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation
Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on biomedical circuits and systems 2010-02, Vol.4 (1), p.39-48 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 4 |
creator | Langlois, P.J. Demosthenous, A. Pachnis, I. Donaldson, N. |
description | Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywhere within the range of the power rails, which may be up to 24 V. The first circuit is used for stimulation only. It uses a floating depletion transistor to enable continuous discharge of the electrodes, except when stimulating, without using power. The second circuit also allows neural signals to be recorded from the same tripole. It uses a modified floating complementary metal-oxide semiconductor (CMOS) discharge switch capable of operating over a range beyond the gate-to-source voltage limits of its transistors. It remains off for long periods using no power while recording. A 0.6-¿m silicon-on-insulator CMOS technology has been used. The measured performance of the circuits has been verified using multiple tripoles in saline. |
doi_str_mv | 10.1109/TBCAS.2009.2034138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1400400590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5356163</ieee_id><sourcerecordid>2543238451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-817141b06ee6f81286e2f59c5da42704df25fd3860dd013a57d5b344112d2ce63</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoh_wB0BCUS_lkuLxt49lS2mlikW0wDHyxpNsqmy8OM4i_j0Ou91DD1QazYw8z7waWW-WvQFyBkDMh7uPs_PbM0qISYlxYPpZdgiGk8IYQ55PPaMFF1wcZEfDcE-IkNTQl9kBZVowRvRhtrlqm2Xx1f_GkF_3EZtgI7r8NrarsbPRh3w-xvUY04ttcMh_tnGZX3bexrZv8ot2qJY2NJjPN0nAprHD_IfvJjj_ZvuU66TxBcMG96Kt719lL2rbDfh6V4-z75ef7mZXxc388_Xs_KaoOFex0KCAw4JIRFlroFoirYWphLOcKsJdTUXtmJbEOQLMCuXEgnEOQB2tULLj7HSruw7-14hDLFfpZOw626Mfh1JLpTgzlD5JKi4p1QxUIt__lwSpgE1386dRTkgKYUhCTx6h934Mffqc0gAYrSSDBNEtVAU_DAHrch3alQ1_SiDl5InynyfKyRPlzhNp6d1OeVys0O1XHkyQgLdboEXE_VgwIUEy9hd8nbit</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911987631</pqid></control><display><type>article</type><title>High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation</title><source>IEEE Electronic Library (IEL)</source><creator>Langlois, P.J. ; Demosthenous, A. ; Pachnis, I. ; Donaldson, N.</creator><creatorcontrib>Langlois, P.J. ; Demosthenous, A. ; Pachnis, I. ; Donaldson, N.</creatorcontrib><description>Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywhere within the range of the power rails, which may be up to 24 V. The first circuit is used for stimulation only. It uses a floating depletion transistor to enable continuous discharge of the electrodes, except when stimulating, without using power. The second circuit also allows neural signals to be recorded from the same tripole. It uses a modified floating complementary metal-oxide semiconductor (CMOS) discharge switch capable of operating over a range beyond the gate-to-source voltage limits of its transistors. It remains off for long periods using no power while recording. A 0.6-¿m silicon-on-insulator CMOS technology has been used. The measured performance of the circuits has been verified using multiple tripoles in saline.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2009.2034138</identifier><identifier>PMID: 23853308</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Circuits ; CMOS technology ; Complementary metal-oxide semiconductor (CMOS) switch ; depletion transistor ; Discharge ; Electric potential ; Electrodes ; floating discharge ; high-power stimulator ; implantable circuits ; MOS devices ; neural recording ; passive discharge ; Pulse generation ; Rails ; Semiconductors ; Sensors ; Silicon on insulator technology ; silicon-on-insulator (SOI) ; Space vector pulse width modulation ; Stimulation ; Transistors ; Voltage</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2010-02, Vol.4 (1), p.39-48</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-817141b06ee6f81286e2f59c5da42704df25fd3860dd013a57d5b344112d2ce63</citedby><cites>FETCH-LOGICAL-c447t-817141b06ee6f81286e2f59c5da42704df25fd3860dd013a57d5b344112d2ce63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5356163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5356163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23853308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Langlois, P.J.</creatorcontrib><creatorcontrib>Demosthenous, A.</creatorcontrib><creatorcontrib>Pachnis, I.</creatorcontrib><creatorcontrib>Donaldson, N.</creatorcontrib><title>High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywhere within the range of the power rails, which may be up to 24 V. The first circuit is used for stimulation only. It uses a floating depletion transistor to enable continuous discharge of the electrodes, except when stimulating, without using power. The second circuit also allows neural signals to be recorded from the same tripole. It uses a modified floating complementary metal-oxide semiconductor (CMOS) discharge switch capable of operating over a range beyond the gate-to-source voltage limits of its transistors. It remains off for long periods using no power while recording. A 0.6-¿m silicon-on-insulator CMOS technology has been used. The measured performance of the circuits has been verified using multiple tripoles in saline.</description><subject>Circuits</subject><subject>CMOS technology</subject><subject>Complementary metal-oxide semiconductor (CMOS) switch</subject><subject>depletion transistor</subject><subject>Discharge</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>floating discharge</subject><subject>high-power stimulator</subject><subject>implantable circuits</subject><subject>MOS devices</subject><subject>neural recording</subject><subject>passive discharge</subject><subject>Pulse generation</subject><subject>Rails</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Silicon on insulator technology</subject><subject>silicon-on-insulator (SOI)</subject><subject>Space vector pulse width modulation</subject><subject>Stimulation</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkk1v1DAQhiMEoh_wB0BCUS_lkuLxt49lS2mlikW0wDHyxpNsqmy8OM4i_j0Ou91DD1QazYw8z7waWW-WvQFyBkDMh7uPs_PbM0qISYlxYPpZdgiGk8IYQ55PPaMFF1wcZEfDcE-IkNTQl9kBZVowRvRhtrlqm2Xx1f_GkF_3EZtgI7r8NrarsbPRh3w-xvUY04ttcMh_tnGZX3bexrZv8ot2qJY2NJjPN0nAprHD_IfvJjj_ZvuU66TxBcMG96Kt719lL2rbDfh6V4-z75ef7mZXxc388_Xs_KaoOFex0KCAw4JIRFlroFoirYWphLOcKsJdTUXtmJbEOQLMCuXEgnEOQB2tULLj7HSruw7-14hDLFfpZOw626Mfh1JLpTgzlD5JKi4p1QxUIt__lwSpgE1386dRTkgKYUhCTx6h934Mffqc0gAYrSSDBNEtVAU_DAHrch3alQ1_SiDl5InynyfKyRPlzhNp6d1OeVys0O1XHkyQgLdboEXE_VgwIUEy9hd8nbit</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Langlois, P.J.</creator><creator>Demosthenous, A.</creator><creator>Pachnis, I.</creator><creator>Donaldson, N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201002</creationdate><title>High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation</title><author>Langlois, P.J. ; Demosthenous, A. ; Pachnis, I. ; Donaldson, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-817141b06ee6f81286e2f59c5da42704df25fd3860dd013a57d5b344112d2ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Circuits</topic><topic>CMOS technology</topic><topic>Complementary metal-oxide semiconductor (CMOS) switch</topic><topic>depletion transistor</topic><topic>Discharge</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>floating discharge</topic><topic>high-power stimulator</topic><topic>implantable circuits</topic><topic>MOS devices</topic><topic>neural recording</topic><topic>passive discharge</topic><topic>Pulse generation</topic><topic>Rails</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Silicon on insulator technology</topic><topic>silicon-on-insulator (SOI)</topic><topic>Space vector pulse width modulation</topic><topic>Stimulation</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langlois, P.J.</creatorcontrib><creatorcontrib>Demosthenous, A.</creatorcontrib><creatorcontrib>Pachnis, I.</creatorcontrib><creatorcontrib>Donaldson, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Langlois, P.J.</au><au>Demosthenous, A.</au><au>Pachnis, I.</au><au>Donaldson, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2010-02</date><risdate>2010</risdate><volume>4</volume><issue>1</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywhere within the range of the power rails, which may be up to 24 V. The first circuit is used for stimulation only. It uses a floating depletion transistor to enable continuous discharge of the electrodes, except when stimulating, without using power. The second circuit also allows neural signals to be recorded from the same tripole. It uses a modified floating complementary metal-oxide semiconductor (CMOS) discharge switch capable of operating over a range beyond the gate-to-source voltage limits of its transistors. It remains off for long periods using no power while recording. A 0.6-¿m silicon-on-insulator CMOS technology has been used. The measured performance of the circuits has been verified using multiple tripoles in saline.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23853308</pmid><doi>10.1109/TBCAS.2009.2034138</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2010-02, Vol.4 (1), p.39-48 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_proquest_miscellaneous_1400400590 |
source | IEEE Electronic Library (IEL) |
subjects | Circuits CMOS technology Complementary metal-oxide semiconductor (CMOS) switch depletion transistor Discharge Electric potential Electrodes floating discharge high-power stimulator implantable circuits MOS devices neural recording passive discharge Pulse generation Rails Semiconductors Sensors Silicon on insulator technology silicon-on-insulator (SOI) Space vector pulse width modulation Stimulation Transistors Voltage |
title | High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Power%20Integrated%20Stimulator%20Output%20Stages%20With%20Floating%20Discharge%20Over%20a%20Wide%20Voltage%20Range%20for%20Nerve%20Stimulation&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Langlois,%20P.J.&rft.date=2010-02&rft.volume=4&rft.issue=1&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2009.2034138&rft_dat=%3Cproquest_RIE%3E2543238451%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911987631&rft_id=info:pmid/23853308&rft_ieee_id=5356163&rfr_iscdi=true |