Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC
This paper presents the implementation of a batteryless CMOS SoC with low voltage pulsed radio-frequency (PRF) stimulation. This implantable SoC uses 402 MHz command signals following the medical implanted communication system (MICS) standard and a low frequency (1 MHz) for RF power transmission. A...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on biomedical circuits and systems 2010-12, Vol.4 (6), p.350-359 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | 6 |
container_start_page | 350 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 4 |
creator | Chiu, Hung-Wei Lin, Mu-Lien Lin, Chii-Wann Ho, I-Hsiu Lin, Wei-Tso Fang, Po-Hsiang Li, Yi-Chin Wen, Yeong-Ray Lu, Shey-Shi |
description | This paper presents the implementation of a batteryless CMOS SoC with low voltage pulsed radio-frequency (PRF) stimulation. This implantable SoC uses 402 MHz command signals following the medical implanted communication system (MICS) standard and a low frequency (1 MHz) for RF power transmission. A body floating type rectifier achieves 84% voltage conversion ratio. A bi-phasic pulse train of 1.4 V and 500 kHz is delivered by a PRF driver circuit. The PRF parameters include pulse duration, pulse frequency and repetition rate, which are controllable via 402 MHz RF receiver. The minimal required 3 V RF V in and 2.2 V V DDr is achieved at 18 mm gap. The SoC chip is fabricated in a 0.35 μm CMOS process and mounted on a PCB with a flexible spiral antenna. The packaged PRF SoC was implanted into rats for the animal study. Von Frey was applied to test the mechanical allodynia in a blinded manner. This work has successfully demonstrated that implanted CMOS SoC stimulating DRG with 1.4 V, 500 kHz PRF could significantly reduce spinal nerve ligation (SNL) induced mechanical allodynia for 3-7 days. |
doi_str_mv | 10.1109/TBCAS.2010.2081668 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1400397060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5634138</ieee_id><sourcerecordid>849469387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-8acb7afbb97298888f67ee283d6644902134fa51539225c247eb57a30a42664a3</originalsourceid><addsrcrecordid>eNp9kctO3TAQhq2qFVDKC7RSZamLdhPq-2UJoVAkEIgD68hJHBrk2AfbWZwn6GvX6Tll0QWzmRnNN789-gH4iNExxkh_vz-tT1bHBJWeIIWFUG_AAdYMVVpr9HapKakYZ3wfvE_pCSEuiCZ7YJ9QxZHk5AD8vjWjh3XwOQYHg4dndjK-h6cm2X7pb2e3VHemH0N1Hu3zbH23gas8TrMzeSxIGGD-ZeFZiMk4eBdChhfGP7pl9pBG_whN0cvZxo2zKcHLae2Mz6Z1FtbXNyu4CvUH8G4w5aWjXT4ED-c_7uuf1dXNxWV9clV1jMhcKdO10gxtqyXRqsQgpLVE0V4IxjQimLLBcMypJoR3hEnbcmkoMowUwtBD8HWru46hnJJyM42ps658yIY5NYppJjRVspDfXiUxQ4hqiQQq6Jf_0KcwR1_uaDBSSFNEBS4U2VJdDClFOzTrOE4mbgrULIY2fw1tFkObnaFl6fNOem4n27-s_HOwAJ-2wGitfRlzQRmmiv4BhN2ijg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080930361</pqid></control><display><type>article</type><title>Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC</title><source>IEEE Xplore</source><creator>Chiu, Hung-Wei ; Lin, Mu-Lien ; Lin, Chii-Wann ; Ho, I-Hsiu ; Lin, Wei-Tso ; Fang, Po-Hsiang ; Li, Yi-Chin ; Wen, Yeong-Ray ; Lu, Shey-Shi</creator><creatorcontrib>Chiu, Hung-Wei ; Lin, Mu-Lien ; Lin, Chii-Wann ; Ho, I-Hsiu ; Lin, Wei-Tso ; Fang, Po-Hsiang ; Li, Yi-Chin ; Wen, Yeong-Ray ; Lu, Shey-Shi</creatorcontrib><description>This paper presents the implementation of a batteryless CMOS SoC with low voltage pulsed radio-frequency (PRF) stimulation. This implantable SoC uses 402 MHz command signals following the medical implanted communication system (MICS) standard and a low frequency (1 MHz) for RF power transmission. A body floating type rectifier achieves 84% voltage conversion ratio. A bi-phasic pulse train of 1.4 V and 500 kHz is delivered by a PRF driver circuit. The PRF parameters include pulse duration, pulse frequency and repetition rate, which are controllable via 402 MHz RF receiver. The minimal required 3 V RF V in and 2.2 V V DDr is achieved at 18 mm gap. The SoC chip is fabricated in a 0.35 μm CMOS process and mounted on a PCB with a flexible spiral antenna. The packaged PRF SoC was implanted into rats for the animal study. Von Frey was applied to test the mechanical allodynia in a blinded manner. This work has successfully demonstrated that implanted CMOS SoC stimulating DRG with 1.4 V, 500 kHz PRF could significantly reduce spinal nerve ligation (SNL) induced mechanical allodynia for 3-7 days.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2010.2081668</identifier><identifier>PMID: 23850752</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Batteryless ; dorsal root ganglion ; implantable ; Implantable biomedical devices ; Pain ; pain control ; Pulsed power supplies ; pulsed radio frequency ; Radio frequency ; Radios ; System-on-a-chip</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2010-12, Vol.4 (6), p.350-359</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-8acb7afbb97298888f67ee283d6644902134fa51539225c247eb57a30a42664a3</citedby><cites>FETCH-LOGICAL-c427t-8acb7afbb97298888f67ee283d6644902134fa51539225c247eb57a30a42664a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5634138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5634138$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23850752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiu, Hung-Wei</creatorcontrib><creatorcontrib>Lin, Mu-Lien</creatorcontrib><creatorcontrib>Lin, Chii-Wann</creatorcontrib><creatorcontrib>Ho, I-Hsiu</creatorcontrib><creatorcontrib>Lin, Wei-Tso</creatorcontrib><creatorcontrib>Fang, Po-Hsiang</creatorcontrib><creatorcontrib>Li, Yi-Chin</creatorcontrib><creatorcontrib>Wen, Yeong-Ray</creatorcontrib><creatorcontrib>Lu, Shey-Shi</creatorcontrib><title>Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents the implementation of a batteryless CMOS SoC with low voltage pulsed radio-frequency (PRF) stimulation. This implantable SoC uses 402 MHz command signals following the medical implanted communication system (MICS) standard and a low frequency (1 MHz) for RF power transmission. A body floating type rectifier achieves 84% voltage conversion ratio. A bi-phasic pulse train of 1.4 V and 500 kHz is delivered by a PRF driver circuit. The PRF parameters include pulse duration, pulse frequency and repetition rate, which are controllable via 402 MHz RF receiver. The minimal required 3 V RF V in and 2.2 V V DDr is achieved at 18 mm gap. The SoC chip is fabricated in a 0.35 μm CMOS process and mounted on a PCB with a flexible spiral antenna. The packaged PRF SoC was implanted into rats for the animal study. Von Frey was applied to test the mechanical allodynia in a blinded manner. This work has successfully demonstrated that implanted CMOS SoC stimulating DRG with 1.4 V, 500 kHz PRF could significantly reduce spinal nerve ligation (SNL) induced mechanical allodynia for 3-7 days.</description><subject>Batteryless</subject><subject>dorsal root ganglion</subject><subject>implantable</subject><subject>Implantable biomedical devices</subject><subject>Pain</subject><subject>pain control</subject><subject>Pulsed power supplies</subject><subject>pulsed radio frequency</subject><subject>Radio frequency</subject><subject>Radios</subject><subject>System-on-a-chip</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctO3TAQhq2qFVDKC7RSZamLdhPq-2UJoVAkEIgD68hJHBrk2AfbWZwn6GvX6Tll0QWzmRnNN789-gH4iNExxkh_vz-tT1bHBJWeIIWFUG_AAdYMVVpr9HapKakYZ3wfvE_pCSEuiCZ7YJ9QxZHk5AD8vjWjh3XwOQYHg4dndjK-h6cm2X7pb2e3VHemH0N1Hu3zbH23gas8TrMzeSxIGGD-ZeFZiMk4eBdChhfGP7pl9pBG_whN0cvZxo2zKcHLae2Mz6Z1FtbXNyu4CvUH8G4w5aWjXT4ED-c_7uuf1dXNxWV9clV1jMhcKdO10gxtqyXRqsQgpLVE0V4IxjQimLLBcMypJoR3hEnbcmkoMowUwtBD8HWru46hnJJyM42ps658yIY5NYppJjRVspDfXiUxQ4hqiQQq6Jf_0KcwR1_uaDBSSFNEBS4U2VJdDClFOzTrOE4mbgrULIY2fw1tFkObnaFl6fNOem4n27-s_HOwAJ-2wGitfRlzQRmmiv4BhN2ijg</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Chiu, Hung-Wei</creator><creator>Lin, Mu-Lien</creator><creator>Lin, Chii-Wann</creator><creator>Ho, I-Hsiu</creator><creator>Lin, Wei-Tso</creator><creator>Fang, Po-Hsiang</creator><creator>Li, Yi-Chin</creator><creator>Wen, Yeong-Ray</creator><creator>Lu, Shey-Shi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201012</creationdate><title>Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC</title><author>Chiu, Hung-Wei ; Lin, Mu-Lien ; Lin, Chii-Wann ; Ho, I-Hsiu ; Lin, Wei-Tso ; Fang, Po-Hsiang ; Li, Yi-Chin ; Wen, Yeong-Ray ; Lu, Shey-Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-8acb7afbb97298888f67ee283d6644902134fa51539225c247eb57a30a42664a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Batteryless</topic><topic>dorsal root ganglion</topic><topic>implantable</topic><topic>Implantable biomedical devices</topic><topic>Pain</topic><topic>pain control</topic><topic>Pulsed power supplies</topic><topic>pulsed radio frequency</topic><topic>Radio frequency</topic><topic>Radios</topic><topic>System-on-a-chip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Hung-Wei</creatorcontrib><creatorcontrib>Lin, Mu-Lien</creatorcontrib><creatorcontrib>Lin, Chii-Wann</creatorcontrib><creatorcontrib>Ho, I-Hsiu</creatorcontrib><creatorcontrib>Lin, Wei-Tso</creatorcontrib><creatorcontrib>Fang, Po-Hsiang</creatorcontrib><creatorcontrib>Li, Yi-Chin</creatorcontrib><creatorcontrib>Wen, Yeong-Ray</creatorcontrib><creatorcontrib>Lu, Shey-Shi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chiu, Hung-Wei</au><au>Lin, Mu-Lien</au><au>Lin, Chii-Wann</au><au>Ho, I-Hsiu</au><au>Lin, Wei-Tso</au><au>Fang, Po-Hsiang</au><au>Li, Yi-Chin</au><au>Wen, Yeong-Ray</au><au>Lu, Shey-Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2010-12</date><risdate>2010</risdate><volume>4</volume><issue>6</issue><spage>350</spage><epage>359</epage><pages>350-359</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents the implementation of a batteryless CMOS SoC with low voltage pulsed radio-frequency (PRF) stimulation. This implantable SoC uses 402 MHz command signals following the medical implanted communication system (MICS) standard and a low frequency (1 MHz) for RF power transmission. A body floating type rectifier achieves 84% voltage conversion ratio. A bi-phasic pulse train of 1.4 V and 500 kHz is delivered by a PRF driver circuit. The PRF parameters include pulse duration, pulse frequency and repetition rate, which are controllable via 402 MHz RF receiver. The minimal required 3 V RF V in and 2.2 V V DDr is achieved at 18 mm gap. The SoC chip is fabricated in a 0.35 μm CMOS process and mounted on a PCB with a flexible spiral antenna. The packaged PRF SoC was implanted into rats for the animal study. Von Frey was applied to test the mechanical allodynia in a blinded manner. This work has successfully demonstrated that implanted CMOS SoC stimulating DRG with 1.4 V, 500 kHz PRF could significantly reduce spinal nerve ligation (SNL) induced mechanical allodynia for 3-7 days.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23850752</pmid><doi>10.1109/TBCAS.2010.2081668</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2010-12, Vol.4 (6), p.350-359 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_proquest_miscellaneous_1400397060 |
source | IEEE Xplore |
subjects | Batteryless dorsal root ganglion implantable Implantable biomedical devices Pain pain control Pulsed power supplies pulsed radio frequency Radio frequency Radios System-on-a-chip |
title | Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pain%20Control%20on%20Demand%20Based%20on%20Pulsed%20Radio-Frequency%20Stimulation%20of%20the%20Dorsal%20Root%20Ganglion%20Using%20a%20Batteryless%20Implantable%20CMOS%20SoC&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Chiu,%20Hung-Wei&rft.date=2010-12&rft.volume=4&rft.issue=6&rft.spage=350&rft.epage=359&rft.pages=350-359&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2010.2081668&rft_dat=%3Cproquest_RIE%3E849469387%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080930361&rft_id=info:pmid/23850752&rft_ieee_id=5634138&rfr_iscdi=true |