Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development

Aquaporins are thought to be associated with water transport and play important roles in cotton (Gossypium hirsutum) fibre elongation. Among aquaporins, plasma membrane intrinsic proteins (PIPs) constitute a plasma-membrane-specific subfamily and are further subdivided into PIP1 and PIP2 groups. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2013-08, Vol.199 (3), p.695-707
Hauptverfasser: Li, Deng‐Di, Ruan, Xiang‐Mei, Zhang, Jie, Wu, Ya‐Jie, Wang, Xiu‐Lan, Li, Xue‐Bao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 3
container_start_page 695
container_title The New phytologist
container_volume 199
creator Li, Deng‐Di
Ruan, Xiang‐Mei
Zhang, Jie
Wu, Ya‐Jie
Wang, Xiu‐Lan
Li, Xue‐Bao
description Aquaporins are thought to be associated with water transport and play important roles in cotton (Gossypium hirsutum) fibre elongation. Among aquaporins, plasma membrane intrinsic proteins (PIPs) constitute a plasma-membrane-specific subfamily and are further subdivided into PIP1 and PIP2 groups. In this study, four fibre-preferential GhPIP2 genes were functionally characterized. The selective interactions among GhPIP2s and their interaction proteins were studied in detail to elucidate the molecular mechanism of cotton fibre development. GhPIP2;3 interacted with GhPIP2;4 and GhPIP2;6, but GhPIP2;6 did not interact with GhPIP2;4. Coexpression of GhPIP2;3/2;4 or GhPIP2;3/2;6 resulted in a positive cooperative effect which increased the permeability coefficient of oocytes, while GhPIP2;4/2;6 did not. GhBCP2 (a blue copper-binding protein) inhibited GhPIP2;6 water channel activity through their interaction. Overexpression of GhPIP2 genes in yeast induced longitudinal growth of the host cells. By contrast, knockdown of expression of GhPIP2 genes in cotton by RNA interference markedly hindered fibre elongation. In conclusion, GhPIP2 proteins are the primary aquaporin isoforms in fibres. They selectively form hetero-oligomers in order to regulate their activities to meet the requirements for rapid fibre elongation.
doi_str_mv 10.1111/nph.12309
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1399932150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.199.3.695</jstor_id><sourcerecordid>newphytologist.199.3.695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4599-92cf19cca6eb85f01172b5bf231e5af591327159c817a11a955b9b5600a5a2853</originalsourceid><addsrcrecordid>eNp1kU9vFCEYh4nR2G314BcwJF7aw7T8GWaGo9lo26TRPWjijTDsO102DEyB6Wa_ip9W1m17MJELhDy_Jy_8EPpAySUt68pPm0vKOJGv0ILWjaw6ytvXaEEI66qmbn6doNOUtoQQKRr2Fp0w3oimZt0C_V6GnIPHk9Np1HiEsY_aA7Y-R-uTNXiKIYP1mCV8vrpdsXSBEzgw2T6C2x9AiNpknAOOcD87nQHnDdiId-UYsdlo78FhfUjYbCFh7ddYRyj8w2wjrPEQIh5sX67WUKxhGsHnd-jNoF2C90_7Gfr59cuP5U119_36dvn5rjK1kLKSzAxUGqMb6DsxEEpb1ot-YJyC0IOQlLOWCmk62mpKtRSil71oCNFCs07wM3R-9JaXPsyQshptMuBc-YcwJ0W5lJIzKkhBP_2DbsMcfZlO0Zq1naibWhbq4kiZGFKKMKgp2lHHvaJEHQpTpTD1t7DCfnwyzv0I6xfyuaECXB2BnXWw_79JfVvdPCurY2KbcogvCQ-7abPPwYV7WwanUiquGin4HzvqsY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427854649</pqid></control><display><type>article</type><title>Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Deng‐Di ; Ruan, Xiang‐Mei ; Zhang, Jie ; Wu, Ya‐Jie ; Wang, Xiu‐Lan ; Li, Xue‐Bao</creator><creatorcontrib>Li, Deng‐Di ; Ruan, Xiang‐Mei ; Zhang, Jie ; Wu, Ya‐Jie ; Wang, Xiu‐Lan ; Li, Xue‐Bao</creatorcontrib><description>Aquaporins are thought to be associated with water transport and play important roles in cotton (Gossypium hirsutum) fibre elongation. Among aquaporins, plasma membrane intrinsic proteins (PIPs) constitute a plasma-membrane-specific subfamily and are further subdivided into PIP1 and PIP2 groups. In this study, four fibre-preferential GhPIP2 genes were functionally characterized. The selective interactions among GhPIP2s and their interaction proteins were studied in detail to elucidate the molecular mechanism of cotton fibre development. GhPIP2;3 interacted with GhPIP2;4 and GhPIP2;6, but GhPIP2;6 did not interact with GhPIP2;4. Coexpression of GhPIP2;3/2;4 or GhPIP2;3/2;6 resulted in a positive cooperative effect which increased the permeability coefficient of oocytes, while GhPIP2;4/2;6 did not. GhBCP2 (a blue copper-binding protein) inhibited GhPIP2;6 water channel activity through their interaction. Overexpression of GhPIP2 genes in yeast induced longitudinal growth of the host cells. By contrast, knockdown of expression of GhPIP2 genes in cotton by RNA interference markedly hindered fibre elongation. In conclusion, GhPIP2 proteins are the primary aquaporin isoforms in fibres. They selectively form hetero-oligomers in order to regulate their activities to meet the requirements for rapid fibre elongation.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12309</identifier><identifier>PMID: 23656428</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Animals ; aquaporin ; Aquaporins ; Aquaporins - genetics ; Aquaporins - metabolism ; Cell Membrane - metabolism ; Cell membranes ; coexpression ; Cotton ; cotton (Gossypium hirsutum) ; Cotton Fiber ; Cotton fibers ; Down-Regulation ; Fiber cells ; fibre development ; Fluorescence ; Gene Expression Regulation, Plant ; Gene Knockdown Techniques ; Genes, Plant - genetics ; Genetic vectors ; Gossypium - genetics ; Gossypium - metabolism ; Oocytes ; Oocytes - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plasma interactions ; Protein Binding ; protein–protein interaction ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Interference ; Schizosaccharomyces - genetics ; Subcellular Fractions - metabolism ; suppression of gene expression ; Two-Hybrid System Techniques ; Xenopus laevis - metabolism ; Yeasts</subject><ispartof>The New phytologist, 2013-08, Vol.199 (3), p.695-707</ispartof><rights>2013 New Phytologist Trust</rights><rights>2013 The Authors. New Phytologist © 2013 New Phytologist Trust</rights><rights>2013 The Authors. New Phytologist © 2013 New Phytologist Trust.</rights><rights>Copyright © 2013 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4599-92cf19cca6eb85f01172b5bf231e5af591327159c817a11a955b9b5600a5a2853</citedby><cites>FETCH-LOGICAL-c4599-92cf19cca6eb85f01172b5bf231e5af591327159c817a11a955b9b5600a5a2853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.199.3.695$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.199.3.695$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,1414,1430,27907,27908,45557,45558,46392,46816,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23656428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Deng‐Di</creatorcontrib><creatorcontrib>Ruan, Xiang‐Mei</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wu, Ya‐Jie</creatorcontrib><creatorcontrib>Wang, Xiu‐Lan</creatorcontrib><creatorcontrib>Li, Xue‐Bao</creatorcontrib><title>Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Aquaporins are thought to be associated with water transport and play important roles in cotton (Gossypium hirsutum) fibre elongation. Among aquaporins, plasma membrane intrinsic proteins (PIPs) constitute a plasma-membrane-specific subfamily and are further subdivided into PIP1 and PIP2 groups. In this study, four fibre-preferential GhPIP2 genes were functionally characterized. The selective interactions among GhPIP2s and their interaction proteins were studied in detail to elucidate the molecular mechanism of cotton fibre development. GhPIP2;3 interacted with GhPIP2;4 and GhPIP2;6, but GhPIP2;6 did not interact with GhPIP2;4. Coexpression of GhPIP2;3/2;4 or GhPIP2;3/2;6 resulted in a positive cooperative effect which increased the permeability coefficient of oocytes, while GhPIP2;4/2;6 did not. GhBCP2 (a blue copper-binding protein) inhibited GhPIP2;6 water channel activity through their interaction. Overexpression of GhPIP2 genes in yeast induced longitudinal growth of the host cells. By contrast, knockdown of expression of GhPIP2 genes in cotton by RNA interference markedly hindered fibre elongation. In conclusion, GhPIP2 proteins are the primary aquaporin isoforms in fibres. They selectively form hetero-oligomers in order to regulate their activities to meet the requirements for rapid fibre elongation.</description><subject>Animals</subject><subject>aquaporin</subject><subject>Aquaporins</subject><subject>Aquaporins - genetics</subject><subject>Aquaporins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>coexpression</subject><subject>Cotton</subject><subject>cotton (Gossypium hirsutum)</subject><subject>Cotton Fiber</subject><subject>Cotton fibers</subject><subject>Down-Regulation</subject><subject>Fiber cells</subject><subject>fibre development</subject><subject>Fluorescence</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Knockdown Techniques</subject><subject>Genes, Plant - genetics</subject><subject>Genetic vectors</subject><subject>Gossypium - genetics</subject><subject>Gossypium - metabolism</subject><subject>Oocytes</subject><subject>Oocytes - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plasma interactions</subject><subject>Protein Binding</subject><subject>protein–protein interaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Interference</subject><subject>Schizosaccharomyces - genetics</subject><subject>Subcellular Fractions - metabolism</subject><subject>suppression of gene expression</subject><subject>Two-Hybrid System Techniques</subject><subject>Xenopus laevis - metabolism</subject><subject>Yeasts</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9vFCEYh4nR2G314BcwJF7aw7T8GWaGo9lo26TRPWjijTDsO102DEyB6Wa_ip9W1m17MJELhDy_Jy_8EPpAySUt68pPm0vKOJGv0ILWjaw6ytvXaEEI66qmbn6doNOUtoQQKRr2Fp0w3oimZt0C_V6GnIPHk9Np1HiEsY_aA7Y-R-uTNXiKIYP1mCV8vrpdsXSBEzgw2T6C2x9AiNpknAOOcD87nQHnDdiId-UYsdlo78FhfUjYbCFh7ddYRyj8w2wjrPEQIh5sX67WUKxhGsHnd-jNoF2C90_7Gfr59cuP5U119_36dvn5rjK1kLKSzAxUGqMb6DsxEEpb1ot-YJyC0IOQlLOWCmk62mpKtRSil71oCNFCs07wM3R-9JaXPsyQshptMuBc-YcwJ0W5lJIzKkhBP_2DbsMcfZlO0Zq1naibWhbq4kiZGFKKMKgp2lHHvaJEHQpTpTD1t7DCfnwyzv0I6xfyuaECXB2BnXWw_79JfVvdPCurY2KbcogvCQ-7abPPwYV7WwanUiquGin4HzvqsY0</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Li, Deng‐Di</creator><creator>Ruan, Xiang‐Mei</creator><creator>Zhang, Jie</creator><creator>Wu, Ya‐Jie</creator><creator>Wang, Xiu‐Lan</creator><creator>Li, Xue‐Bao</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201308</creationdate><title>Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development</title><author>Li, Deng‐Di ; Ruan, Xiang‐Mei ; Zhang, Jie ; Wu, Ya‐Jie ; Wang, Xiu‐Lan ; Li, Xue‐Bao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4599-92cf19cca6eb85f01172b5bf231e5af591327159c817a11a955b9b5600a5a2853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>aquaporin</topic><topic>Aquaporins</topic><topic>Aquaporins - genetics</topic><topic>Aquaporins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>coexpression</topic><topic>Cotton</topic><topic>cotton (Gossypium hirsutum)</topic><topic>Cotton Fiber</topic><topic>Cotton fibers</topic><topic>Down-Regulation</topic><topic>Fiber cells</topic><topic>fibre development</topic><topic>Fluorescence</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Knockdown Techniques</topic><topic>Genes, Plant - genetics</topic><topic>Genetic vectors</topic><topic>Gossypium - genetics</topic><topic>Gossypium - metabolism</topic><topic>Oocytes</topic><topic>Oocytes - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plasma interactions</topic><topic>Protein Binding</topic><topic>protein–protein interaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Interference</topic><topic>Schizosaccharomyces - genetics</topic><topic>Subcellular Fractions - metabolism</topic><topic>suppression of gene expression</topic><topic>Two-Hybrid System Techniques</topic><topic>Xenopus laevis - metabolism</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Deng‐Di</creatorcontrib><creatorcontrib>Ruan, Xiang‐Mei</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wu, Ya‐Jie</creatorcontrib><creatorcontrib>Wang, Xiu‐Lan</creatorcontrib><creatorcontrib>Li, Xue‐Bao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Deng‐Di</au><au>Ruan, Xiang‐Mei</au><au>Zhang, Jie</au><au>Wu, Ya‐Jie</au><au>Wang, Xiu‐Lan</au><au>Li, Xue‐Bao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2013-08</date><risdate>2013</risdate><volume>199</volume><issue>3</issue><spage>695</spage><epage>707</epage><pages>695-707</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Aquaporins are thought to be associated with water transport and play important roles in cotton (Gossypium hirsutum) fibre elongation. Among aquaporins, plasma membrane intrinsic proteins (PIPs) constitute a plasma-membrane-specific subfamily and are further subdivided into PIP1 and PIP2 groups. In this study, four fibre-preferential GhPIP2 genes were functionally characterized. The selective interactions among GhPIP2s and their interaction proteins were studied in detail to elucidate the molecular mechanism of cotton fibre development. GhPIP2;3 interacted with GhPIP2;4 and GhPIP2;6, but GhPIP2;6 did not interact with GhPIP2;4. Coexpression of GhPIP2;3/2;4 or GhPIP2;3/2;6 resulted in a positive cooperative effect which increased the permeability coefficient of oocytes, while GhPIP2;4/2;6 did not. GhBCP2 (a blue copper-binding protein) inhibited GhPIP2;6 water channel activity through their interaction. Overexpression of GhPIP2 genes in yeast induced longitudinal growth of the host cells. By contrast, knockdown of expression of GhPIP2 genes in cotton by RNA interference markedly hindered fibre elongation. In conclusion, GhPIP2 proteins are the primary aquaporin isoforms in fibres. They selectively form hetero-oligomers in order to regulate their activities to meet the requirements for rapid fibre elongation.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>23656428</pmid><doi>10.1111/nph.12309</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2013-08, Vol.199 (3), p.695-707
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1399932150
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Jstor Complete Legacy; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
aquaporin
Aquaporins
Aquaporins - genetics
Aquaporins - metabolism
Cell Membrane - metabolism
Cell membranes
coexpression
Cotton
cotton (Gossypium hirsutum)
Cotton Fiber
Cotton fibers
Down-Regulation
Fiber cells
fibre development
Fluorescence
Gene Expression Regulation, Plant
Gene Knockdown Techniques
Genes, Plant - genetics
Genetic vectors
Gossypium - genetics
Gossypium - metabolism
Oocytes
Oocytes - metabolism
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Plasma interactions
Protein Binding
protein–protein interaction
Reverse Transcriptase Polymerase Chain Reaction
RNA Interference
Schizosaccharomyces - genetics
Subcellular Fractions - metabolism
suppression of gene expression
Two-Hybrid System Techniques
Xenopus laevis - metabolism
Yeasts
title Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cotton%20plasma%20membrane%20intrinsic%20protein%202s%20(PIP2s)%20selectively%20interact%20to%20regulate%20their%20water%20channel%20activities%20and%20are%20required%20for%20fibre%20development&rft.jtitle=The%20New%20phytologist&rft.au=Li,%20Deng%E2%80%90Di&rft.date=2013-08&rft.volume=199&rft.issue=3&rft.spage=695&rft.epage=707&rft.pages=695-707&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12309&rft_dat=%3Cjstor_proqu%3Enewphytologist.199.3.695%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1427854649&rft_id=info:pmid/23656428&rft_jstor_id=newphytologist.199.3.695&rfr_iscdi=true