C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances

Heat shock proteins Hsp90 and Hsp70 facilitate protein folding but can also direct proteins for ubiquitin-mediated degradation. The mechanisms regulating these opposite activities involve Hsp binding to co-chaperones including CHIP and HOP at their C-termini. We demonstrated that the extreme C-termi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2013-06, Vol.32 (25), p.3101-3110
Hauptverfasser: Muller, P, Ruckova, E, Halada, P, Coates, P J, Hrstka, R, Lane, D P, Vojtesek, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3110
container_issue 25
container_start_page 3101
container_title Oncogene
container_volume 32
creator Muller, P
Ruckova, E
Halada, P
Coates, P J
Hrstka, R
Lane, D P
Vojtesek, B
description Heat shock proteins Hsp90 and Hsp70 facilitate protein folding but can also direct proteins for ubiquitin-mediated degradation. The mechanisms regulating these opposite activities involve Hsp binding to co-chaperones including CHIP and HOP at their C-termini. We demonstrated that the extreme C-termini of Hsp70 and Hsp90 contain phosphorylation sites targeted by kinases including CK1, CK2 and GSK3-β in vitro . The phosphorylation of Hsp90 and Hsp70 prevents binding to CHIP and thus enhances binding to HOP. Highly proliferative cells contain phosphorylated chaperones in complex with HOP and phospho-mimetic and non-phosphorylable Hsp mutant proteins show that phosphorylation is directly associated with increased proliferation rate. We also demonstrate that primary human cancers contain high levels of phosphorylated chaperones and show increased levels of HOP protein and mRNA. These data identify C-terminal phosphorylation of Hsp70 and Hsp90 as a switch for regulating co-chaperone binding and indicate that cancer cells possess an elevated protein folding environment by the concerted action of co-chaperone expression and chaperone modifications. In addition to identifying the pathway responsible for regulating chaperone-mediated protein folding/degradation balances in normal cells, the data provide novel mechanisms to account for the aberrant chaperone activities observed in human cancer cells and have implications for the application of anti-chaperone therapies in cancer treatment.
doi_str_mv 10.1038/onc.2012.314
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1399923203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A336286096</galeid><sourcerecordid>A336286096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-bfa57e55e480a7a92ede9af0fd896c7834113699460c6f96c880b75820b44c193</originalsourceid><addsrcrecordid>eNqNks1u1TAQhSMEopfCjjWyxIYFuR3_JLGX1RXtrVSpXcDacpxJmiqxg50s-jo8KY5SUEEVQpZly_PNnLF9suw9hT0FLs-8s3sGlO05FS-yHRVVmReFEi-zHagCcsU4O8nexHgPAJUC9jo7YUwyIYHush-HfMYw9s4MZLrzMc3wMJi59474lhzjVAExrll3CkjAbklRjMQMKc-lLal71_SuI7Mn1uf2zkwYvEvI4Xh1u-Xe3K7RBjcpJBaHIdUJZAp-xt6R1g9rjbMGu2CaTb42g3EW49vsVWuGiO8e19Ps28WXr4djfn1zeXU4v85tIdWc160pKiwKTBczlVEMG1SmhbaRqrSV5IJSXiolSrBlm46khLoqJINaCEsVP80-bXVTU98XjLMe-7h2ahz6JWrKlVofE_h_oBWUnJeiTOjHv9B7v6SHG6JmpaAF5bSQ_6LWpiUIVT2hOjOg7l3r52DsKq3PkxqTJahVcf8MlUaDY2_Tz7R9Ov8j4fOWYIOPMWCrp9CPJjxoCnr1mE4e06vHdPJYwj889rrUIza_4V-mSkC-ATGFXIfhyWWeK_gTwnbZLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369804978</pqid></control><display><type>article</type><title>C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Muller, P ; Ruckova, E ; Halada, P ; Coates, P J ; Hrstka, R ; Lane, D P ; Vojtesek, B</creator><creatorcontrib>Muller, P ; Ruckova, E ; Halada, P ; Coates, P J ; Hrstka, R ; Lane, D P ; Vojtesek, B</creatorcontrib><description>Heat shock proteins Hsp90 and Hsp70 facilitate protein folding but can also direct proteins for ubiquitin-mediated degradation. The mechanisms regulating these opposite activities involve Hsp binding to co-chaperones including CHIP and HOP at their C-termini. We demonstrated that the extreme C-termini of Hsp70 and Hsp90 contain phosphorylation sites targeted by kinases including CK1, CK2 and GSK3-β in vitro . The phosphorylation of Hsp90 and Hsp70 prevents binding to CHIP and thus enhances binding to HOP. Highly proliferative cells contain phosphorylated chaperones in complex with HOP and phospho-mimetic and non-phosphorylable Hsp mutant proteins show that phosphorylation is directly associated with increased proliferation rate. We also demonstrate that primary human cancers contain high levels of phosphorylated chaperones and show increased levels of HOP protein and mRNA. These data identify C-terminal phosphorylation of Hsp70 and Hsp90 as a switch for regulating co-chaperone binding and indicate that cancer cells possess an elevated protein folding environment by the concerted action of co-chaperone expression and chaperone modifications. In addition to identifying the pathway responsible for regulating chaperone-mediated protein folding/degradation balances in normal cells, the data provide novel mechanisms to account for the aberrant chaperone activities observed in human cancer cells and have implications for the application of anti-chaperone therapies in cancer treatment.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2012.314</identifier><identifier>PMID: 22824801</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/470/1981 ; 692/699/67 ; Apoptosis ; Breast Neoplasms - metabolism ; Cancer ; Cell Biology ; Cell growth ; Cell Line, Tumor ; Chaperones ; Chemical properties ; Female ; Gene expression ; Genetic aspects ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta ; Heat shock proteins ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; HEK293 Cells ; HSP70 Heat-Shock Proteins - metabolism ; Hsp70 protein ; HSP90 Heat-Shock Proteins - metabolism ; Hsp90 protein ; Human Genetics ; Humans ; Internal Medicine ; Kinases ; Medicine ; Medicine &amp; Public Health ; mRNA ; Oncology ; original-article ; Phosphorylation ; Phosphotransferases ; Physiological aspects ; Protein Binding ; Protein Folding ; RNA, Messenger - biosynthesis ; Ubiquitin ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Oncogene, 2013-06, Vol.32 (25), p.3101-3110</ispartof><rights>Macmillan Publishers Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 20, 2013</rights><rights>Macmillan Publishers Limited 2013.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-bfa57e55e480a7a92ede9af0fd896c7834113699460c6f96c880b75820b44c193</citedby><cites>FETCH-LOGICAL-c589t-bfa57e55e480a7a92ede9af0fd896c7834113699460c6f96c880b75820b44c193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2012.314$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2012.314$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22824801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muller, P</creatorcontrib><creatorcontrib>Ruckova, E</creatorcontrib><creatorcontrib>Halada, P</creatorcontrib><creatorcontrib>Coates, P J</creatorcontrib><creatorcontrib>Hrstka, R</creatorcontrib><creatorcontrib>Lane, D P</creatorcontrib><creatorcontrib>Vojtesek, B</creatorcontrib><title>C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Heat shock proteins Hsp90 and Hsp70 facilitate protein folding but can also direct proteins for ubiquitin-mediated degradation. The mechanisms regulating these opposite activities involve Hsp binding to co-chaperones including CHIP and HOP at their C-termini. We demonstrated that the extreme C-termini of Hsp70 and Hsp90 contain phosphorylation sites targeted by kinases including CK1, CK2 and GSK3-β in vitro . The phosphorylation of Hsp90 and Hsp70 prevents binding to CHIP and thus enhances binding to HOP. Highly proliferative cells contain phosphorylated chaperones in complex with HOP and phospho-mimetic and non-phosphorylable Hsp mutant proteins show that phosphorylation is directly associated with increased proliferation rate. We also demonstrate that primary human cancers contain high levels of phosphorylated chaperones and show increased levels of HOP protein and mRNA. These data identify C-terminal phosphorylation of Hsp70 and Hsp90 as a switch for regulating co-chaperone binding and indicate that cancer cells possess an elevated protein folding environment by the concerted action of co-chaperone expression and chaperone modifications. In addition to identifying the pathway responsible for regulating chaperone-mediated protein folding/degradation balances in normal cells, the data provide novel mechanisms to account for the aberrant chaperone activities observed in human cancer cells and have implications for the application of anti-chaperone therapies in cancer treatment.</description><subject>631/45/470/1981</subject><subject>692/699/67</subject><subject>Apoptosis</subject><subject>Breast Neoplasms - metabolism</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Chaperones</subject><subject>Chemical properties</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>Heat shock proteins</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>HEK293 Cells</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Hsp70 protein</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Hsp90 protein</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>mRNA</subject><subject>Oncology</subject><subject>original-article</subject><subject>Phosphorylation</subject><subject>Phosphotransferases</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>RNA, Messenger - biosynthesis</subject><subject>Ubiquitin</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNks1u1TAQhSMEopfCjjWyxIYFuR3_JLGX1RXtrVSpXcDacpxJmiqxg50s-jo8KY5SUEEVQpZly_PNnLF9suw9hT0FLs-8s3sGlO05FS-yHRVVmReFEi-zHagCcsU4O8nexHgPAJUC9jo7YUwyIYHush-HfMYw9s4MZLrzMc3wMJi59474lhzjVAExrll3CkjAbklRjMQMKc-lLal71_SuI7Mn1uf2zkwYvEvI4Xh1u-Xe3K7RBjcpJBaHIdUJZAp-xt6R1g9rjbMGu2CaTb42g3EW49vsVWuGiO8e19Ps28WXr4djfn1zeXU4v85tIdWc160pKiwKTBczlVEMG1SmhbaRqrSV5IJSXiolSrBlm46khLoqJINaCEsVP80-bXVTU98XjLMe-7h2ahz6JWrKlVofE_h_oBWUnJeiTOjHv9B7v6SHG6JmpaAF5bSQ_6LWpiUIVT2hOjOg7l3r52DsKq3PkxqTJahVcf8MlUaDY2_Tz7R9Ov8j4fOWYIOPMWCrp9CPJjxoCnr1mE4e06vHdPJYwj889rrUIza_4V-mSkC-ATGFXIfhyWWeK_gTwnbZLw</recordid><startdate>20130620</startdate><enddate>20130620</enddate><creator>Muller, P</creator><creator>Ruckova, E</creator><creator>Halada, P</creator><creator>Coates, P J</creator><creator>Hrstka, R</creator><creator>Lane, D P</creator><creator>Vojtesek, B</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130620</creationdate><title>C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances</title><author>Muller, P ; Ruckova, E ; Halada, P ; Coates, P J ; Hrstka, R ; Lane, D P ; Vojtesek, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-bfa57e55e480a7a92ede9af0fd896c7834113699460c6f96c880b75820b44c193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/45/470/1981</topic><topic>692/699/67</topic><topic>Apoptosis</topic><topic>Breast Neoplasms - metabolism</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Chaperones</topic><topic>Chemical properties</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>Heat shock proteins</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>HEK293 Cells</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Hsp70 protein</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Hsp90 protein</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>mRNA</topic><topic>Oncology</topic><topic>original-article</topic><topic>Phosphorylation</topic><topic>Phosphotransferases</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>RNA, Messenger - biosynthesis</topic><topic>Ubiquitin</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muller, P</creatorcontrib><creatorcontrib>Ruckova, E</creatorcontrib><creatorcontrib>Halada, P</creatorcontrib><creatorcontrib>Coates, P J</creatorcontrib><creatorcontrib>Hrstka, R</creatorcontrib><creatorcontrib>Lane, D P</creatorcontrib><creatorcontrib>Vojtesek, B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muller, P</au><au>Ruckova, E</au><au>Halada, P</au><au>Coates, P J</au><au>Hrstka, R</au><au>Lane, D P</au><au>Vojtesek, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2013-06-20</date><risdate>2013</risdate><volume>32</volume><issue>25</issue><spage>3101</spage><epage>3110</epage><pages>3101-3110</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Heat shock proteins Hsp90 and Hsp70 facilitate protein folding but can also direct proteins for ubiquitin-mediated degradation. The mechanisms regulating these opposite activities involve Hsp binding to co-chaperones including CHIP and HOP at their C-termini. We demonstrated that the extreme C-termini of Hsp70 and Hsp90 contain phosphorylation sites targeted by kinases including CK1, CK2 and GSK3-β in vitro . The phosphorylation of Hsp90 and Hsp70 prevents binding to CHIP and thus enhances binding to HOP. Highly proliferative cells contain phosphorylated chaperones in complex with HOP and phospho-mimetic and non-phosphorylable Hsp mutant proteins show that phosphorylation is directly associated with increased proliferation rate. We also demonstrate that primary human cancers contain high levels of phosphorylated chaperones and show increased levels of HOP protein and mRNA. These data identify C-terminal phosphorylation of Hsp70 and Hsp90 as a switch for regulating co-chaperone binding and indicate that cancer cells possess an elevated protein folding environment by the concerted action of co-chaperone expression and chaperone modifications. In addition to identifying the pathway responsible for regulating chaperone-mediated protein folding/degradation balances in normal cells, the data provide novel mechanisms to account for the aberrant chaperone activities observed in human cancer cells and have implications for the application of anti-chaperone therapies in cancer treatment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22824801</pmid><doi>10.1038/onc.2012.314</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2013-06, Vol.32 (25), p.3101-3110
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_1399923203
source MEDLINE; Nature Journals Online; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings
subjects 631/45/470/1981
692/699/67
Apoptosis
Breast Neoplasms - metabolism
Cancer
Cell Biology
Cell growth
Cell Line, Tumor
Chaperones
Chemical properties
Female
Gene expression
Genetic aspects
Glycogen Synthase Kinase 3 - metabolism
Glycogen Synthase Kinase 3 beta
Heat shock proteins
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
HEK293 Cells
HSP70 Heat-Shock Proteins - metabolism
Hsp70 protein
HSP90 Heat-Shock Proteins - metabolism
Hsp90 protein
Human Genetics
Humans
Internal Medicine
Kinases
Medicine
Medicine & Public Health
mRNA
Oncology
original-article
Phosphorylation
Phosphotransferases
Physiological aspects
Protein Binding
Protein Folding
RNA, Messenger - biosynthesis
Ubiquitin
Ubiquitin-Protein Ligases - metabolism
title C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=C-terminal%20phosphorylation%20of%20Hsp70%20and%20Hsp90%20regulates%20alternate%20binding%20to%20co-chaperones%20CHIP%20and%20HOP%20to%20determine%20cellular%20protein%20folding/degradation%20balances&rft.jtitle=Oncogene&rft.au=Muller,%20P&rft.date=2013-06-20&rft.volume=32&rft.issue=25&rft.spage=3101&rft.epage=3110&rft.pages=3101-3110&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2012.314&rft_dat=%3Cgale_proqu%3EA336286096%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369804978&rft_id=info:pmid/22824801&rft_galeid=A336286096&rfr_iscdi=true