Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis

Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carcinogenesis (New York) 2013-06, Vol.34 (6), p.1323-1330
Hauptverfasser: Wang, Xin, Bai, Hua, Zhang, Xiaodi, Liu, Jiangzheng, Cao, Peipei, Liao, Nai, Zhang, Wei, Wang, Zhao, Hai, Chunxu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1330
container_issue 6
container_start_page 1323
container_title Carcinogenesis (New York)
container_volume 34
creator Wang, Xin
Bai, Hua
Zhang, Xiaodi
Liu, Jiangzheng
Cao, Peipei
Liao, Nai
Zhang, Wei
Wang, Zhao
Hai, Chunxu
description Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular mechanisms. BALB/c mice were injected subcutaneously with HepG2 cells to establish transplanted tumors. Apoptosis and cell cycle arrest-related markers and signaling cascades were determined by western blot, immunofluorescence, reverse transcriptase-polymerase chain reaction and flow cytometric analysis. OA exhibited inhibitory effect on HCC through induction of apoptosis and cell cycle arrest both in transplanted tumors and in HepG2 cells. OA induced apoptosis through mitochondrial pathway, evidenced by inhibition of Akt/mammalian target of rapamycin pathway, mitochondrial dysfunction, transient increase of adenosine triphosphate, increase of Bax/Bcl-2 ratio, increased release of cytochrome c and activation of caspase/poly (ADP-ribose) polymerase. Activation of mitochondrial apoptotic pathway may be due to reactive oxygen species generated by mitochondrial fatty acid oxidation, resulted from enhancement of lipolysis regulated by cyclic adenosine 3',5'-monophosphate response element-binding protein-hormone-sensitive lipase/peroxisome proliferator-activated receptor γ signaling. OA induced G2/M cell cycle arrest through p21-mediated downregulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell cycle arrest. OA demonstrated significant antitumor activities in HCC in vivo and in vitro models. These data provide new insights into the mechanisms underlying the antitumor effect of OA.
doi_str_mv 10.1093/carcin/bgt058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1399917065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1399917065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-3a87d06236dcdf6290d5f76721fa64e9017fdd11bc93650f3b7f9c147e01054a3</originalsourceid><addsrcrecordid>eNo9kU9v1DAQxS0EokvLkSvykYvpOOM46yOqSltRCQnRczTxH9YosYOdRdrvwIcmqxROc5if3nt6j7F3Ej5KMHhtqdiYrocfC7T7F2wnlQbRyD28ZDuQCgUiqgv2ptafAFJja16ziwYVKGNwx_48pEMc4pLLifsQvF14DjyPnlIeo-Vko-M58YOfacnWj-NxpMI31zwR_x2J3377IuYWxeRdpMU7fua4PdnRcyrF14VTcnxabewhJ1cijcL52Sfn0_qb87zkGusVexVorP7t871kT59vv9_ci8evdw83nx6FVSgXgbTvHOgGtbMu6MaAa0Onu0YG0sobkF1wTsrBGtQtBBy6YKxUnQcJrSK8ZB823bnkX8c1Xj_Fes5Myedj7SUaY2QHul1RsaG25FqLD_1c4kTl1EvozwP0WxX9NsDKv3-WPg5rHf_pf43jX6N6hYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399917065</pqid></control><display><type>article</type><title>Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Xin ; Bai, Hua ; Zhang, Xiaodi ; Liu, Jiangzheng ; Cao, Peipei ; Liao, Nai ; Zhang, Wei ; Wang, Zhao ; Hai, Chunxu</creator><creatorcontrib>Wang, Xin ; Bai, Hua ; Zhang, Xiaodi ; Liu, Jiangzheng ; Cao, Peipei ; Liao, Nai ; Zhang, Wei ; Wang, Zhao ; Hai, Chunxu</creatorcontrib><description>Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular mechanisms. BALB/c mice were injected subcutaneously with HepG2 cells to establish transplanted tumors. Apoptosis and cell cycle arrest-related markers and signaling cascades were determined by western blot, immunofluorescence, reverse transcriptase-polymerase chain reaction and flow cytometric analysis. OA exhibited inhibitory effect on HCC through induction of apoptosis and cell cycle arrest both in transplanted tumors and in HepG2 cells. OA induced apoptosis through mitochondrial pathway, evidenced by inhibition of Akt/mammalian target of rapamycin pathway, mitochondrial dysfunction, transient increase of adenosine triphosphate, increase of Bax/Bcl-2 ratio, increased release of cytochrome c and activation of caspase/poly (ADP-ribose) polymerase. Activation of mitochondrial apoptotic pathway may be due to reactive oxygen species generated by mitochondrial fatty acid oxidation, resulted from enhancement of lipolysis regulated by cyclic adenosine 3',5'-monophosphate response element-binding protein-hormone-sensitive lipase/peroxisome proliferator-activated receptor γ signaling. OA induced G2/M cell cycle arrest through p21-mediated downregulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell cycle arrest. OA demonstrated significant antitumor activities in HCC in vivo and in vitro models. These data provide new insights into the mechanisms underlying the antitumor effect of OA.</description><identifier>ISSN: 0143-3334</identifier><identifier>EISSN: 1460-2180</identifier><identifier>DOI: 10.1093/carcin/bgt058</identifier><identifier>PMID: 23404993</identifier><language>eng</language><publisher>England</publisher><subject>Adenosine Triphosphate - biosynthesis ; Animals ; Antineoplastic Agents - pharmacology ; Apoptosis - drug effects ; Carcinoma, Hepatocellular - drug therapy ; Carcinoma, Hepatocellular - metabolism ; Carcinoma, Hepatocellular - pathology ; CDC2 Protein Kinase - biosynthesis ; Cell Cycle Checkpoints - drug effects ; Cell Line, Tumor ; Cyclin B1 - biosynthesis ; Cyclooxygenase 2 - biosynthesis ; Cytochromes c - secretion ; Extracellular Signal-Regulated MAP Kinases - metabolism ; G2 Phase Cell Cycle Checkpoints ; Hep G2 Cells ; Humans ; Liver Neoplasms - drug therapy ; Liver Neoplasms - mortality ; Liver Neoplasms - pathology ; Male ; Mice ; Mice, Inbred BALB C ; Mitochondria - metabolism ; Neoplasm Transplantation ; Oleanolic Acid - pharmacology ; Poly(ADP-ribose) Polymerases - metabolism ; Proto-Oncogene Proteins c-akt - antagonists &amp; inhibitors ; Proto-Oncogene Proteins c-bcl-2 - biosynthesis ; Reactive Oxygen Species - metabolism ; TOR Serine-Threonine Kinases - antagonists &amp; inhibitors ; Transplantation, Heterologous ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Carcinogenesis (New York), 2013-06, Vol.34 (6), p.1323-1330</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-3a87d06236dcdf6290d5f76721fa64e9017fdd11bc93650f3b7f9c147e01054a3</citedby><cites>FETCH-LOGICAL-c431t-3a87d06236dcdf6290d5f76721fa64e9017fdd11bc93650f3b7f9c147e01054a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23404993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Bai, Hua</creatorcontrib><creatorcontrib>Zhang, Xiaodi</creatorcontrib><creatorcontrib>Liu, Jiangzheng</creatorcontrib><creatorcontrib>Cao, Peipei</creatorcontrib><creatorcontrib>Liao, Nai</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Hai, Chunxu</creatorcontrib><title>Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis</title><title>Carcinogenesis (New York)</title><addtitle>Carcinogenesis</addtitle><description>Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular mechanisms. BALB/c mice were injected subcutaneously with HepG2 cells to establish transplanted tumors. Apoptosis and cell cycle arrest-related markers and signaling cascades were determined by western blot, immunofluorescence, reverse transcriptase-polymerase chain reaction and flow cytometric analysis. OA exhibited inhibitory effect on HCC through induction of apoptosis and cell cycle arrest both in transplanted tumors and in HepG2 cells. OA induced apoptosis through mitochondrial pathway, evidenced by inhibition of Akt/mammalian target of rapamycin pathway, mitochondrial dysfunction, transient increase of adenosine triphosphate, increase of Bax/Bcl-2 ratio, increased release of cytochrome c and activation of caspase/poly (ADP-ribose) polymerase. Activation of mitochondrial apoptotic pathway may be due to reactive oxygen species generated by mitochondrial fatty acid oxidation, resulted from enhancement of lipolysis regulated by cyclic adenosine 3',5'-monophosphate response element-binding protein-hormone-sensitive lipase/peroxisome proliferator-activated receptor γ signaling. OA induced G2/M cell cycle arrest through p21-mediated downregulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell cycle arrest. OA demonstrated significant antitumor activities in HCC in vivo and in vitro models. These data provide new insights into the mechanisms underlying the antitumor effect of OA.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Carcinoma, Hepatocellular - drug therapy</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>CDC2 Protein Kinase - biosynthesis</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cyclin B1 - biosynthesis</subject><subject>Cyclooxygenase 2 - biosynthesis</subject><subject>Cytochromes c - secretion</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>G2 Phase Cell Cycle Checkpoints</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Liver Neoplasms - drug therapy</subject><subject>Liver Neoplasms - mortality</subject><subject>Liver Neoplasms - pathology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mitochondria - metabolism</subject><subject>Neoplasm Transplantation</subject><subject>Oleanolic Acid - pharmacology</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins c-bcl-2 - biosynthesis</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>Transplantation, Heterologous</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>0143-3334</issn><issn>1460-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kU9v1DAQxS0EokvLkSvykYvpOOM46yOqSltRCQnRczTxH9YosYOdRdrvwIcmqxROc5if3nt6j7F3Ej5KMHhtqdiYrocfC7T7F2wnlQbRyD28ZDuQCgUiqgv2ptafAFJja16ziwYVKGNwx_48pEMc4pLLifsQvF14DjyPnlIeo-Vko-M58YOfacnWj-NxpMI31zwR_x2J3377IuYWxeRdpMU7fua4PdnRcyrF14VTcnxabewhJ1cijcL52Sfn0_qb87zkGusVexVorP7t871kT59vv9_ci8evdw83nx6FVSgXgbTvHOgGtbMu6MaAa0Onu0YG0sobkF1wTsrBGtQtBBy6YKxUnQcJrSK8ZB823bnkX8c1Xj_Fes5Myedj7SUaY2QHul1RsaG25FqLD_1c4kTl1EvozwP0WxX9NsDKv3-WPg5rHf_pf43jX6N6hYo</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Wang, Xin</creator><creator>Bai, Hua</creator><creator>Zhang, Xiaodi</creator><creator>Liu, Jiangzheng</creator><creator>Cao, Peipei</creator><creator>Liao, Nai</creator><creator>Zhang, Wei</creator><creator>Wang, Zhao</creator><creator>Hai, Chunxu</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130601</creationdate><title>Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis</title><author>Wang, Xin ; Bai, Hua ; Zhang, Xiaodi ; Liu, Jiangzheng ; Cao, Peipei ; Liao, Nai ; Zhang, Wei ; Wang, Zhao ; Hai, Chunxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-3a87d06236dcdf6290d5f76721fa64e9017fdd11bc93650f3b7f9c147e01054a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Carcinoma, Hepatocellular - drug therapy</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>CDC2 Protein Kinase - biosynthesis</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cyclin B1 - biosynthesis</topic><topic>Cyclooxygenase 2 - biosynthesis</topic><topic>Cytochromes c - secretion</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>G2 Phase Cell Cycle Checkpoints</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Liver Neoplasms - drug therapy</topic><topic>Liver Neoplasms - mortality</topic><topic>Liver Neoplasms - pathology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mitochondria - metabolism</topic><topic>Neoplasm Transplantation</topic><topic>Oleanolic Acid - pharmacology</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins c-bcl-2 - biosynthesis</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>Transplantation, Heterologous</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Bai, Hua</creatorcontrib><creatorcontrib>Zhang, Xiaodi</creatorcontrib><creatorcontrib>Liu, Jiangzheng</creatorcontrib><creatorcontrib>Cao, Peipei</creatorcontrib><creatorcontrib>Liao, Nai</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Hai, Chunxu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Carcinogenesis (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xin</au><au>Bai, Hua</au><au>Zhang, Xiaodi</au><au>Liu, Jiangzheng</au><au>Cao, Peipei</au><au>Liao, Nai</au><au>Zhang, Wei</au><au>Wang, Zhao</au><au>Hai, Chunxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis</atitle><jtitle>Carcinogenesis (New York)</jtitle><addtitle>Carcinogenesis</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>34</volume><issue>6</issue><spage>1323</spage><epage>1330</epage><pages>1323-1330</pages><issn>0143-3334</issn><eissn>1460-2180</eissn><abstract>Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular mechanisms. BALB/c mice were injected subcutaneously with HepG2 cells to establish transplanted tumors. Apoptosis and cell cycle arrest-related markers and signaling cascades were determined by western blot, immunofluorescence, reverse transcriptase-polymerase chain reaction and flow cytometric analysis. OA exhibited inhibitory effect on HCC through induction of apoptosis and cell cycle arrest both in transplanted tumors and in HepG2 cells. OA induced apoptosis through mitochondrial pathway, evidenced by inhibition of Akt/mammalian target of rapamycin pathway, mitochondrial dysfunction, transient increase of adenosine triphosphate, increase of Bax/Bcl-2 ratio, increased release of cytochrome c and activation of caspase/poly (ADP-ribose) polymerase. Activation of mitochondrial apoptotic pathway may be due to reactive oxygen species generated by mitochondrial fatty acid oxidation, resulted from enhancement of lipolysis regulated by cyclic adenosine 3',5'-monophosphate response element-binding protein-hormone-sensitive lipase/peroxisome proliferator-activated receptor γ signaling. OA induced G2/M cell cycle arrest through p21-mediated downregulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell cycle arrest. OA demonstrated significant antitumor activities in HCC in vivo and in vitro models. These data provide new insights into the mechanisms underlying the antitumor effect of OA.</abstract><cop>England</cop><pmid>23404993</pmid><doi>10.1093/carcin/bgt058</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3334
ispartof Carcinogenesis (New York), 2013-06, Vol.34 (6), p.1323-1330
issn 0143-3334
1460-2180
language eng
recordid cdi_proquest_miscellaneous_1399917065
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adenosine Triphosphate - biosynthesis
Animals
Antineoplastic Agents - pharmacology
Apoptosis - drug effects
Carcinoma, Hepatocellular - drug therapy
Carcinoma, Hepatocellular - metabolism
Carcinoma, Hepatocellular - pathology
CDC2 Protein Kinase - biosynthesis
Cell Cycle Checkpoints - drug effects
Cell Line, Tumor
Cyclin B1 - biosynthesis
Cyclooxygenase 2 - biosynthesis
Cytochromes c - secretion
Extracellular Signal-Regulated MAP Kinases - metabolism
G2 Phase Cell Cycle Checkpoints
Hep G2 Cells
Humans
Liver Neoplasms - drug therapy
Liver Neoplasms - mortality
Liver Neoplasms - pathology
Male
Mice
Mice, Inbred BALB C
Mitochondria - metabolism
Neoplasm Transplantation
Oleanolic Acid - pharmacology
Poly(ADP-ribose) Polymerases - metabolism
Proto-Oncogene Proteins c-akt - antagonists & inhibitors
Proto-Oncogene Proteins c-bcl-2 - biosynthesis
Reactive Oxygen Species - metabolism
TOR Serine-Threonine Kinases - antagonists & inhibitors
Transplantation, Heterologous
Tumor Suppressor Protein p53 - metabolism
title Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibitory%20effect%20of%20oleanolic%20acid%20on%20hepatocellular%20carcinoma%20via%20ERK-p53-mediated%20cell%20cycle%20arrest%20and%20mitochondrial-dependent%20apoptosis&rft.jtitle=Carcinogenesis%20(New%20York)&rft.au=Wang,%20Xin&rft.date=2013-06-01&rft.volume=34&rft.issue=6&rft.spage=1323&rft.epage=1330&rft.pages=1323-1330&rft.issn=0143-3334&rft.eissn=1460-2180&rft_id=info:doi/10.1093/carcin/bgt058&rft_dat=%3Cproquest_cross%3E1399917065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1399917065&rft_id=info:pmid/23404993&rfr_iscdi=true