Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis
Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular me...
Gespeichert in:
Veröffentlicht in: | Carcinogenesis (New York) 2013-06, Vol.34 (6), p.1323-1330 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1330 |
---|---|
container_issue | 6 |
container_start_page | 1323 |
container_title | Carcinogenesis (New York) |
container_volume | 34 |
creator | Wang, Xin Bai, Hua Zhang, Xiaodi Liu, Jiangzheng Cao, Peipei Liao, Nai Zhang, Wei Wang, Zhao Hai, Chunxu |
description | Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular mechanisms. BALB/c mice were injected subcutaneously with HepG2 cells to establish transplanted tumors. Apoptosis and cell cycle arrest-related markers and signaling cascades were determined by western blot, immunofluorescence, reverse transcriptase-polymerase chain reaction and flow cytometric analysis. OA exhibited inhibitory effect on HCC through induction of apoptosis and cell cycle arrest both in transplanted tumors and in HepG2 cells. OA induced apoptosis through mitochondrial pathway, evidenced by inhibition of Akt/mammalian target of rapamycin pathway, mitochondrial dysfunction, transient increase of adenosine triphosphate, increase of Bax/Bcl-2 ratio, increased release of cytochrome c and activation of caspase/poly (ADP-ribose) polymerase. Activation of mitochondrial apoptotic pathway may be due to reactive oxygen species generated by mitochondrial fatty acid oxidation, resulted from enhancement of lipolysis regulated by cyclic adenosine 3',5'-monophosphate response element-binding protein-hormone-sensitive lipase/peroxisome proliferator-activated receptor γ signaling. OA induced G2/M cell cycle arrest through p21-mediated downregulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell cycle arrest. OA demonstrated significant antitumor activities in HCC in vivo and in vitro models. These data provide new insights into the mechanisms underlying the antitumor effect of OA. |
doi_str_mv | 10.1093/carcin/bgt058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1399917065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1399917065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-3a87d06236dcdf6290d5f76721fa64e9017fdd11bc93650f3b7f9c147e01054a3</originalsourceid><addsrcrecordid>eNo9kU9v1DAQxS0EokvLkSvykYvpOOM46yOqSltRCQnRczTxH9YosYOdRdrvwIcmqxROc5if3nt6j7F3Ej5KMHhtqdiYrocfC7T7F2wnlQbRyD28ZDuQCgUiqgv2ptafAFJja16ziwYVKGNwx_48pEMc4pLLifsQvF14DjyPnlIeo-Vko-M58YOfacnWj-NxpMI31zwR_x2J3377IuYWxeRdpMU7fua4PdnRcyrF14VTcnxabewhJ1cijcL52Sfn0_qb87zkGusVexVorP7t871kT59vv9_ci8evdw83nx6FVSgXgbTvHOgGtbMu6MaAa0Onu0YG0sobkF1wTsrBGtQtBBy6YKxUnQcJrSK8ZB823bnkX8c1Xj_Fes5Myedj7SUaY2QHul1RsaG25FqLD_1c4kTl1EvozwP0WxX9NsDKv3-WPg5rHf_pf43jX6N6hYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399917065</pqid></control><display><type>article</type><title>Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Xin ; Bai, Hua ; Zhang, Xiaodi ; Liu, Jiangzheng ; Cao, Peipei ; Liao, Nai ; Zhang, Wei ; Wang, Zhao ; Hai, Chunxu</creator><creatorcontrib>Wang, Xin ; Bai, Hua ; Zhang, Xiaodi ; Liu, Jiangzheng ; Cao, Peipei ; Liao, Nai ; Zhang, Wei ; Wang, Zhao ; Hai, Chunxu</creatorcontrib><description>Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular mechanisms. BALB/c mice were injected subcutaneously with HepG2 cells to establish transplanted tumors. Apoptosis and cell cycle arrest-related markers and signaling cascades were determined by western blot, immunofluorescence, reverse transcriptase-polymerase chain reaction and flow cytometric analysis. OA exhibited inhibitory effect on HCC through induction of apoptosis and cell cycle arrest both in transplanted tumors and in HepG2 cells. OA induced apoptosis through mitochondrial pathway, evidenced by inhibition of Akt/mammalian target of rapamycin pathway, mitochondrial dysfunction, transient increase of adenosine triphosphate, increase of Bax/Bcl-2 ratio, increased release of cytochrome c and activation of caspase/poly (ADP-ribose) polymerase. Activation of mitochondrial apoptotic pathway may be due to reactive oxygen species generated by mitochondrial fatty acid oxidation, resulted from enhancement of lipolysis regulated by cyclic adenosine 3',5'-monophosphate response element-binding protein-hormone-sensitive lipase/peroxisome proliferator-activated receptor γ signaling. OA induced G2/M cell cycle arrest through p21-mediated downregulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell cycle arrest. OA demonstrated significant antitumor activities in HCC in vivo and in vitro models. These data provide new insights into the mechanisms underlying the antitumor effect of OA.</description><identifier>ISSN: 0143-3334</identifier><identifier>EISSN: 1460-2180</identifier><identifier>DOI: 10.1093/carcin/bgt058</identifier><identifier>PMID: 23404993</identifier><language>eng</language><publisher>England</publisher><subject>Adenosine Triphosphate - biosynthesis ; Animals ; Antineoplastic Agents - pharmacology ; Apoptosis - drug effects ; Carcinoma, Hepatocellular - drug therapy ; Carcinoma, Hepatocellular - metabolism ; Carcinoma, Hepatocellular - pathology ; CDC2 Protein Kinase - biosynthesis ; Cell Cycle Checkpoints - drug effects ; Cell Line, Tumor ; Cyclin B1 - biosynthesis ; Cyclooxygenase 2 - biosynthesis ; Cytochromes c - secretion ; Extracellular Signal-Regulated MAP Kinases - metabolism ; G2 Phase Cell Cycle Checkpoints ; Hep G2 Cells ; Humans ; Liver Neoplasms - drug therapy ; Liver Neoplasms - mortality ; Liver Neoplasms - pathology ; Male ; Mice ; Mice, Inbred BALB C ; Mitochondria - metabolism ; Neoplasm Transplantation ; Oleanolic Acid - pharmacology ; Poly(ADP-ribose) Polymerases - metabolism ; Proto-Oncogene Proteins c-akt - antagonists & inhibitors ; Proto-Oncogene Proteins c-bcl-2 - biosynthesis ; Reactive Oxygen Species - metabolism ; TOR Serine-Threonine Kinases - antagonists & inhibitors ; Transplantation, Heterologous ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Carcinogenesis (New York), 2013-06, Vol.34 (6), p.1323-1330</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-3a87d06236dcdf6290d5f76721fa64e9017fdd11bc93650f3b7f9c147e01054a3</citedby><cites>FETCH-LOGICAL-c431t-3a87d06236dcdf6290d5f76721fa64e9017fdd11bc93650f3b7f9c147e01054a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23404993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Bai, Hua</creatorcontrib><creatorcontrib>Zhang, Xiaodi</creatorcontrib><creatorcontrib>Liu, Jiangzheng</creatorcontrib><creatorcontrib>Cao, Peipei</creatorcontrib><creatorcontrib>Liao, Nai</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Hai, Chunxu</creatorcontrib><title>Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis</title><title>Carcinogenesis (New York)</title><addtitle>Carcinogenesis</addtitle><description>Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular mechanisms. BALB/c mice were injected subcutaneously with HepG2 cells to establish transplanted tumors. Apoptosis and cell cycle arrest-related markers and signaling cascades were determined by western blot, immunofluorescence, reverse transcriptase-polymerase chain reaction and flow cytometric analysis. OA exhibited inhibitory effect on HCC through induction of apoptosis and cell cycle arrest both in transplanted tumors and in HepG2 cells. OA induced apoptosis through mitochondrial pathway, evidenced by inhibition of Akt/mammalian target of rapamycin pathway, mitochondrial dysfunction, transient increase of adenosine triphosphate, increase of Bax/Bcl-2 ratio, increased release of cytochrome c and activation of caspase/poly (ADP-ribose) polymerase. Activation of mitochondrial apoptotic pathway may be due to reactive oxygen species generated by mitochondrial fatty acid oxidation, resulted from enhancement of lipolysis regulated by cyclic adenosine 3',5'-monophosphate response element-binding protein-hormone-sensitive lipase/peroxisome proliferator-activated receptor γ signaling. OA induced G2/M cell cycle arrest through p21-mediated downregulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell cycle arrest. OA demonstrated significant antitumor activities in HCC in vivo and in vitro models. These data provide new insights into the mechanisms underlying the antitumor effect of OA.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Carcinoma, Hepatocellular - drug therapy</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>CDC2 Protein Kinase - biosynthesis</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cyclin B1 - biosynthesis</subject><subject>Cyclooxygenase 2 - biosynthesis</subject><subject>Cytochromes c - secretion</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>G2 Phase Cell Cycle Checkpoints</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Liver Neoplasms - drug therapy</subject><subject>Liver Neoplasms - mortality</subject><subject>Liver Neoplasms - pathology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mitochondria - metabolism</subject><subject>Neoplasm Transplantation</subject><subject>Oleanolic Acid - pharmacology</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins c-bcl-2 - biosynthesis</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>TOR Serine-Threonine Kinases - antagonists & inhibitors</subject><subject>Transplantation, Heterologous</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>0143-3334</issn><issn>1460-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kU9v1DAQxS0EokvLkSvykYvpOOM46yOqSltRCQnRczTxH9YosYOdRdrvwIcmqxROc5if3nt6j7F3Ej5KMHhtqdiYrocfC7T7F2wnlQbRyD28ZDuQCgUiqgv2ptafAFJja16ziwYVKGNwx_48pEMc4pLLifsQvF14DjyPnlIeo-Vko-M58YOfacnWj-NxpMI31zwR_x2J3377IuYWxeRdpMU7fua4PdnRcyrF14VTcnxabewhJ1cijcL52Sfn0_qb87zkGusVexVorP7t871kT59vv9_ci8evdw83nx6FVSgXgbTvHOgGtbMu6MaAa0Onu0YG0sobkF1wTsrBGtQtBBy6YKxUnQcJrSK8ZB823bnkX8c1Xj_Fes5Myedj7SUaY2QHul1RsaG25FqLD_1c4kTl1EvozwP0WxX9NsDKv3-WPg5rHf_pf43jX6N6hYo</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Wang, Xin</creator><creator>Bai, Hua</creator><creator>Zhang, Xiaodi</creator><creator>Liu, Jiangzheng</creator><creator>Cao, Peipei</creator><creator>Liao, Nai</creator><creator>Zhang, Wei</creator><creator>Wang, Zhao</creator><creator>Hai, Chunxu</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130601</creationdate><title>Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis</title><author>Wang, Xin ; Bai, Hua ; Zhang, Xiaodi ; Liu, Jiangzheng ; Cao, Peipei ; Liao, Nai ; Zhang, Wei ; Wang, Zhao ; Hai, Chunxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-3a87d06236dcdf6290d5f76721fa64e9017fdd11bc93650f3b7f9c147e01054a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Carcinoma, Hepatocellular - drug therapy</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>CDC2 Protein Kinase - biosynthesis</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cyclin B1 - biosynthesis</topic><topic>Cyclooxygenase 2 - biosynthesis</topic><topic>Cytochromes c - secretion</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>G2 Phase Cell Cycle Checkpoints</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Liver Neoplasms - drug therapy</topic><topic>Liver Neoplasms - mortality</topic><topic>Liver Neoplasms - pathology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mitochondria - metabolism</topic><topic>Neoplasm Transplantation</topic><topic>Oleanolic Acid - pharmacology</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins c-bcl-2 - biosynthesis</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>TOR Serine-Threonine Kinases - antagonists & inhibitors</topic><topic>Transplantation, Heterologous</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Bai, Hua</creatorcontrib><creatorcontrib>Zhang, Xiaodi</creatorcontrib><creatorcontrib>Liu, Jiangzheng</creatorcontrib><creatorcontrib>Cao, Peipei</creatorcontrib><creatorcontrib>Liao, Nai</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Hai, Chunxu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Carcinogenesis (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xin</au><au>Bai, Hua</au><au>Zhang, Xiaodi</au><au>Liu, Jiangzheng</au><au>Cao, Peipei</au><au>Liao, Nai</au><au>Zhang, Wei</au><au>Wang, Zhao</au><au>Hai, Chunxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis</atitle><jtitle>Carcinogenesis (New York)</jtitle><addtitle>Carcinogenesis</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>34</volume><issue>6</issue><spage>1323</spage><epage>1330</epage><pages>1323-1330</pages><issn>0143-3334</issn><eissn>1460-2180</eissn><abstract>Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular mechanisms. BALB/c mice were injected subcutaneously with HepG2 cells to establish transplanted tumors. Apoptosis and cell cycle arrest-related markers and signaling cascades were determined by western blot, immunofluorescence, reverse transcriptase-polymerase chain reaction and flow cytometric analysis. OA exhibited inhibitory effect on HCC through induction of apoptosis and cell cycle arrest both in transplanted tumors and in HepG2 cells. OA induced apoptosis through mitochondrial pathway, evidenced by inhibition of Akt/mammalian target of rapamycin pathway, mitochondrial dysfunction, transient increase of adenosine triphosphate, increase of Bax/Bcl-2 ratio, increased release of cytochrome c and activation of caspase/poly (ADP-ribose) polymerase. Activation of mitochondrial apoptotic pathway may be due to reactive oxygen species generated by mitochondrial fatty acid oxidation, resulted from enhancement of lipolysis regulated by cyclic adenosine 3',5'-monophosphate response element-binding protein-hormone-sensitive lipase/peroxisome proliferator-activated receptor γ signaling. OA induced G2/M cell cycle arrest through p21-mediated downregulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell cycle arrest. OA demonstrated significant antitumor activities in HCC in vivo and in vitro models. These data provide new insights into the mechanisms underlying the antitumor effect of OA.</abstract><cop>England</cop><pmid>23404993</pmid><doi>10.1093/carcin/bgt058</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3334 |
ispartof | Carcinogenesis (New York), 2013-06, Vol.34 (6), p.1323-1330 |
issn | 0143-3334 1460-2180 |
language | eng |
recordid | cdi_proquest_miscellaneous_1399917065 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adenosine Triphosphate - biosynthesis Animals Antineoplastic Agents - pharmacology Apoptosis - drug effects Carcinoma, Hepatocellular - drug therapy Carcinoma, Hepatocellular - metabolism Carcinoma, Hepatocellular - pathology CDC2 Protein Kinase - biosynthesis Cell Cycle Checkpoints - drug effects Cell Line, Tumor Cyclin B1 - biosynthesis Cyclooxygenase 2 - biosynthesis Cytochromes c - secretion Extracellular Signal-Regulated MAP Kinases - metabolism G2 Phase Cell Cycle Checkpoints Hep G2 Cells Humans Liver Neoplasms - drug therapy Liver Neoplasms - mortality Liver Neoplasms - pathology Male Mice Mice, Inbred BALB C Mitochondria - metabolism Neoplasm Transplantation Oleanolic Acid - pharmacology Poly(ADP-ribose) Polymerases - metabolism Proto-Oncogene Proteins c-akt - antagonists & inhibitors Proto-Oncogene Proteins c-bcl-2 - biosynthesis Reactive Oxygen Species - metabolism TOR Serine-Threonine Kinases - antagonists & inhibitors Transplantation, Heterologous Tumor Suppressor Protein p53 - metabolism |
title | Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibitory%20effect%20of%20oleanolic%20acid%20on%20hepatocellular%20carcinoma%20via%20ERK-p53-mediated%20cell%20cycle%20arrest%20and%20mitochondrial-dependent%20apoptosis&rft.jtitle=Carcinogenesis%20(New%20York)&rft.au=Wang,%20Xin&rft.date=2013-06-01&rft.volume=34&rft.issue=6&rft.spage=1323&rft.epage=1330&rft.pages=1323-1330&rft.issn=0143-3334&rft.eissn=1460-2180&rft_id=info:doi/10.1093/carcin/bgt058&rft_dat=%3Cproquest_cross%3E1399917065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1399917065&rft_id=info:pmid/23404993&rfr_iscdi=true |