Principal Variance Component Analysis of Crop Composition Data: A Case Study on Herbicide-Tolerant Cotton

Compositional studies on genetically modified (GM) and non-GM crops have consistently demonstrated that their respective levels of key nutrients and antinutrients are remarkably similar and that other factors such as germplasm and environment contribute more to compositional variability than transge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2013-07, Vol.61 (26), p.6412-6422
Hauptverfasser: Harrison, Jay M, Howard, Delia, Malven, Marianne, Halls, Steven C, Culler, Angela H, Harrigan, George G, Wolfinger, Russell D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6422
container_issue 26
container_start_page 6412
container_title Journal of agricultural and food chemistry
container_volume 61
creator Harrison, Jay M
Howard, Delia
Malven, Marianne
Halls, Steven C
Culler, Angela H
Harrigan, George G
Wolfinger, Russell D
description Compositional studies on genetically modified (GM) and non-GM crops have consistently demonstrated that their respective levels of key nutrients and antinutrients are remarkably similar and that other factors such as germplasm and environment contribute more to compositional variability than transgenic breeding. We propose that graphical and statistical approaches that can provide meaningful evaluations of the relative impact of different factors to compositional variability may offer advantages over traditional frequentist testing. A case study on the novel application of principal variance component analysis (PVCA) in a compositional assessment of herbicide-tolerant GM cotton is presented. Results of the traditional analysis of variance approach confirmed the compositional equivalence of the GM and non-GM cotton. The multivariate approach of PVCA provided further information on the impact of location and germplasm on compositional variability relative to GM.
doi_str_mv 10.1021/jf400606t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1393826522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1393826522</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-b62faf936c703768f23d41c589b9346968c4d39c368c7de7dfdfefb36d646b5b3</originalsourceid><addsrcrecordid>eNpt0ctO3DAUBmALFcGUsuAFWm8qtYu0vsR20t0otFAJCSSg2-jEF-RRJk5tZzFvj6sZYNOVLZ9Pv4-PEbqg5BsljH7fuJoQSWQ-QisqGKkEpc07tCKlWDVC0lP0PqUNIaQRipygU8ZlrWpFV8jfRT9pP8OI_0D0MGmLu7Cdw2SnjNcTjLvkEw4OdzHM-1Ly2YcJX0KGH3iNO0gW3-fF7HA5vbZx8NobWz2E0UYoKV3IOUwf0LGDMdnzw3qGHn_9fOiuq5vbq9_d-qYCLttcDZI5cC2XWhGuZOMYNzXVommHlteylY2uDW81LxtlrDLOOOsGLo2s5SAGfoa-7HPnGP4uNuV-65O24wiTDUvqKW95w6RgrNCve6pjSCla18_RbyHuekr6f5PtXydb7MdD7DJsrXmVL6Ms4PMBQNIwuvJ07dObU4K2tWqK-7R3DkIPT7GYx3tGaLmIcsqleEsCnfpNWGL5hfSflp4BLo2VVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1393826522</pqid></control><display><type>article</type><title>Principal Variance Component Analysis of Crop Composition Data: A Case Study on Herbicide-Tolerant Cotton</title><source>MEDLINE</source><source>ACS Publications</source><creator>Harrison, Jay M ; Howard, Delia ; Malven, Marianne ; Halls, Steven C ; Culler, Angela H ; Harrigan, George G ; Wolfinger, Russell D</creator><creatorcontrib>Harrison, Jay M ; Howard, Delia ; Malven, Marianne ; Halls, Steven C ; Culler, Angela H ; Harrigan, George G ; Wolfinger, Russell D</creatorcontrib><description>Compositional studies on genetically modified (GM) and non-GM crops have consistently demonstrated that their respective levels of key nutrients and antinutrients are remarkably similar and that other factors such as germplasm and environment contribute more to compositional variability than transgenic breeding. We propose that graphical and statistical approaches that can provide meaningful evaluations of the relative impact of different factors to compositional variability may offer advantages over traditional frequentist testing. A case study on the novel application of principal variance component analysis (PVCA) in a compositional assessment of herbicide-tolerant GM cotton is presented. Results of the traditional analysis of variance approach confirmed the compositional equivalence of the GM and non-GM cotton. The multivariate approach of PVCA provided further information on the impact of location and germplasm on compositional variability relative to GM.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf400606t</identifier><identifier>PMID: 23647471</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>analysis of variance ; Biological and medical sciences ; breeding ; case studies ; cotton ; crops ; Crops, Agricultural - chemistry ; Crops, Agricultural - genetics ; Crops, Agricultural - growth &amp; development ; Crops, Agricultural - metabolism ; Drug Resistance ; Food industries ; Fundamental and applied biological sciences. Psychology ; germplasm ; Gossypium - chemistry ; Gossypium - genetics ; Gossypium - growth &amp; development ; Gossypium - metabolism ; Herbicides ; nutrients ; Plants, Genetically Modified - chemistry ; Plants, Genetically Modified - growth &amp; development ; Plants, Genetically Modified - metabolism ; Principal Component Analysis ; Seeds - chemistry ; Seeds - growth &amp; development ; Seeds - metabolism ; United States ; variance</subject><ispartof>Journal of agricultural and food chemistry, 2013-07, Vol.61 (26), p.6412-6422</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-b62faf936c703768f23d41c589b9346968c4d39c368c7de7dfdfefb36d646b5b3</citedby><cites>FETCH-LOGICAL-a369t-b62faf936c703768f23d41c589b9346968c4d39c368c7de7dfdfefb36d646b5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jf400606t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jf400606t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27519478$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23647471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harrison, Jay M</creatorcontrib><creatorcontrib>Howard, Delia</creatorcontrib><creatorcontrib>Malven, Marianne</creatorcontrib><creatorcontrib>Halls, Steven C</creatorcontrib><creatorcontrib>Culler, Angela H</creatorcontrib><creatorcontrib>Harrigan, George G</creatorcontrib><creatorcontrib>Wolfinger, Russell D</creatorcontrib><title>Principal Variance Component Analysis of Crop Composition Data: A Case Study on Herbicide-Tolerant Cotton</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Compositional studies on genetically modified (GM) and non-GM crops have consistently demonstrated that their respective levels of key nutrients and antinutrients are remarkably similar and that other factors such as germplasm and environment contribute more to compositional variability than transgenic breeding. We propose that graphical and statistical approaches that can provide meaningful evaluations of the relative impact of different factors to compositional variability may offer advantages over traditional frequentist testing. A case study on the novel application of principal variance component analysis (PVCA) in a compositional assessment of herbicide-tolerant GM cotton is presented. Results of the traditional analysis of variance approach confirmed the compositional equivalence of the GM and non-GM cotton. The multivariate approach of PVCA provided further information on the impact of location and germplasm on compositional variability relative to GM.</description><subject>analysis of variance</subject><subject>Biological and medical sciences</subject><subject>breeding</subject><subject>case studies</subject><subject>cotton</subject><subject>crops</subject><subject>Crops, Agricultural - chemistry</subject><subject>Crops, Agricultural - genetics</subject><subject>Crops, Agricultural - growth &amp; development</subject><subject>Crops, Agricultural - metabolism</subject><subject>Drug Resistance</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>germplasm</subject><subject>Gossypium - chemistry</subject><subject>Gossypium - genetics</subject><subject>Gossypium - growth &amp; development</subject><subject>Gossypium - metabolism</subject><subject>Herbicides</subject><subject>nutrients</subject><subject>Plants, Genetically Modified - chemistry</subject><subject>Plants, Genetically Modified - growth &amp; development</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Principal Component Analysis</subject><subject>Seeds - chemistry</subject><subject>Seeds - growth &amp; development</subject><subject>Seeds - metabolism</subject><subject>United States</subject><subject>variance</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0ctO3DAUBmALFcGUsuAFWm8qtYu0vsR20t0otFAJCSSg2-jEF-RRJk5tZzFvj6sZYNOVLZ9Pv4-PEbqg5BsljH7fuJoQSWQ-QisqGKkEpc07tCKlWDVC0lP0PqUNIaQRipygU8ZlrWpFV8jfRT9pP8OI_0D0MGmLu7Cdw2SnjNcTjLvkEw4OdzHM-1Ly2YcJX0KGH3iNO0gW3-fF7HA5vbZx8NobWz2E0UYoKV3IOUwf0LGDMdnzw3qGHn_9fOiuq5vbq9_d-qYCLttcDZI5cC2XWhGuZOMYNzXVommHlteylY2uDW81LxtlrDLOOOsGLo2s5SAGfoa-7HPnGP4uNuV-65O24wiTDUvqKW95w6RgrNCve6pjSCla18_RbyHuekr6f5PtXydb7MdD7DJsrXmVL6Ms4PMBQNIwuvJ07dObU4K2tWqK-7R3DkIPT7GYx3tGaLmIcsqleEsCnfpNWGL5hfSflp4BLo2VVw</recordid><startdate>20130703</startdate><enddate>20130703</enddate><creator>Harrison, Jay M</creator><creator>Howard, Delia</creator><creator>Malven, Marianne</creator><creator>Halls, Steven C</creator><creator>Culler, Angela H</creator><creator>Harrigan, George G</creator><creator>Wolfinger, Russell D</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130703</creationdate><title>Principal Variance Component Analysis of Crop Composition Data: A Case Study on Herbicide-Tolerant Cotton</title><author>Harrison, Jay M ; Howard, Delia ; Malven, Marianne ; Halls, Steven C ; Culler, Angela H ; Harrigan, George G ; Wolfinger, Russell D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-b62faf936c703768f23d41c589b9346968c4d39c368c7de7dfdfefb36d646b5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>analysis of variance</topic><topic>Biological and medical sciences</topic><topic>breeding</topic><topic>case studies</topic><topic>cotton</topic><topic>crops</topic><topic>Crops, Agricultural - chemistry</topic><topic>Crops, Agricultural - genetics</topic><topic>Crops, Agricultural - growth &amp; development</topic><topic>Crops, Agricultural - metabolism</topic><topic>Drug Resistance</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>germplasm</topic><topic>Gossypium - chemistry</topic><topic>Gossypium - genetics</topic><topic>Gossypium - growth &amp; development</topic><topic>Gossypium - metabolism</topic><topic>Herbicides</topic><topic>nutrients</topic><topic>Plants, Genetically Modified - chemistry</topic><topic>Plants, Genetically Modified - growth &amp; development</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Principal Component Analysis</topic><topic>Seeds - chemistry</topic><topic>Seeds - growth &amp; development</topic><topic>Seeds - metabolism</topic><topic>United States</topic><topic>variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrison, Jay M</creatorcontrib><creatorcontrib>Howard, Delia</creatorcontrib><creatorcontrib>Malven, Marianne</creatorcontrib><creatorcontrib>Halls, Steven C</creatorcontrib><creatorcontrib>Culler, Angela H</creatorcontrib><creatorcontrib>Harrigan, George G</creatorcontrib><creatorcontrib>Wolfinger, Russell D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrison, Jay M</au><au>Howard, Delia</au><au>Malven, Marianne</au><au>Halls, Steven C</au><au>Culler, Angela H</au><au>Harrigan, George G</au><au>Wolfinger, Russell D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principal Variance Component Analysis of Crop Composition Data: A Case Study on Herbicide-Tolerant Cotton</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2013-07-03</date><risdate>2013</risdate><volume>61</volume><issue>26</issue><spage>6412</spage><epage>6422</epage><pages>6412-6422</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Compositional studies on genetically modified (GM) and non-GM crops have consistently demonstrated that their respective levels of key nutrients and antinutrients are remarkably similar and that other factors such as germplasm and environment contribute more to compositional variability than transgenic breeding. We propose that graphical and statistical approaches that can provide meaningful evaluations of the relative impact of different factors to compositional variability may offer advantages over traditional frequentist testing. A case study on the novel application of principal variance component analysis (PVCA) in a compositional assessment of herbicide-tolerant GM cotton is presented. Results of the traditional analysis of variance approach confirmed the compositional equivalence of the GM and non-GM cotton. The multivariate approach of PVCA provided further information on the impact of location and germplasm on compositional variability relative to GM.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23647471</pmid><doi>10.1021/jf400606t</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2013-07, Vol.61 (26), p.6412-6422
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_1393826522
source MEDLINE; ACS Publications
subjects analysis of variance
Biological and medical sciences
breeding
case studies
cotton
crops
Crops, Agricultural - chemistry
Crops, Agricultural - genetics
Crops, Agricultural - growth & development
Crops, Agricultural - metabolism
Drug Resistance
Food industries
Fundamental and applied biological sciences. Psychology
germplasm
Gossypium - chemistry
Gossypium - genetics
Gossypium - growth & development
Gossypium - metabolism
Herbicides
nutrients
Plants, Genetically Modified - chemistry
Plants, Genetically Modified - growth & development
Plants, Genetically Modified - metabolism
Principal Component Analysis
Seeds - chemistry
Seeds - growth & development
Seeds - metabolism
United States
variance
title Principal Variance Component Analysis of Crop Composition Data: A Case Study on Herbicide-Tolerant Cotton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principal%20Variance%20Component%20Analysis%20of%20Crop%20Composition%20Data:%20A%20Case%20Study%20on%20Herbicide-Tolerant%20Cotton&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Harrison,%20Jay%20M&rft.date=2013-07-03&rft.volume=61&rft.issue=26&rft.spage=6412&rft.epage=6422&rft.pages=6412-6422&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf400606t&rft_dat=%3Cproquest_cross%3E1393826522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1393826522&rft_id=info:pmid/23647471&rfr_iscdi=true