Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology
While cadmium telluride and copper-indium-gallium-sulfide-selenide (CIGSSe) solar cells have either already surpassed (for CdTe) or reached (for CIGSSe) the 1 GW yr−1 production level, highlighting the promise of these rapidly growing thin-film technologies, reliance on the heavy metal cadmium and s...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2013-08, Vol.371 (1996), p.20110432-20110432 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While cadmium telluride and copper-indium-gallium-sulfide-selenide (CIGSSe) solar cells have either already surpassed (for CdTe) or reached (for CIGSSe) the 1 GW yr−1 production level, highlighting the promise of these rapidly growing thin-film technologies, reliance on the heavy metal cadmium and scarce elements indium and tellurium has prompted concern about scalability towards the terawatt level. Despite recent advances in structurally related copper-zinc-tin-sulfide-selenide (CZTSSe) absorbers, in which indium from CIGSSe is replaced with more plentiful and lower cost zinc and tin, there is still a sizeable performance gap between the kesterite CZTSSe and the more mature CdTe and CIGSSe technologies. This review will discuss recent progress in the CZTSSe field, especially focusing on a direct comparison with analogous higher performing CIGSSe to probe the performance bottlenecks in Earth-abundant kesterite devices. Key limitations in the current generation of CZTSSe devices include a shortfall in open circuit voltage relative to the absorber band gap and secondarily a high series resistance, which contributes to a lower device fill factor. Understanding and addressing these performance issues should yield closer performance parity between CZTSSe and CdTe/CIGSSe absorbers and hopefully facilitate a successful launch of commercialization for the kesterite-based technology. |
---|---|
ISSN: | 1364-503X 1471-2962 |
DOI: | 10.1098/rsta.2011.0432 |