Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems

The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2013-04, Vol.87 (4), p.042910-042910, Article 042910
Hauptverfasser: Zeeb, Steffen, Dahms, Thomas, Flunkert, Valentin, Schöll, Eckehard, Kanter, Ido, Kinzel, Wolfgang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 042910
container_issue 4
container_start_page 042910
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 87
creator Zeeb, Steffen
Dahms, Thomas
Flunkert, Valentin
Schöll, Eckehard
Kanter, Ido
Kinzel, Wolfgang
description The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps, we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore, the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated.
doi_str_mv 10.1103/PhysRevE.87.042910
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1393798974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1393798974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-7fdecb744204571d4373ff400ec8b97592ecc6228e404b08731464a50b9516823</originalsourceid><addsrcrecordid>eNo9UEtLxDAYDKK4uvoHPEiPXrrm2SRHWdcHLCii55CmKa20zZqkQv31Zt1dT98w38zADABXCC4QguT2tZnCm_1eLQRfQIolgkfgDDEGc0x4cbzFROaEMzYD5yF8QkgwEfQUzDApuKQSnwFz3wbjhtgOoxtDpmP02kTns6rt7RBaNyQui43NwjSYxruh_dFxSydh-v9BV2cxyfPKdnqyVWYa7WJrkiVE24cLcFLrLtjL_Z2Dj4fV-_IpX788Pi_v1rkhkMSc15U1JacUQ8o4qijhpK4phNaIUnImsTWmwFhYCmkJBSeIFlQzWEqGCoHJHNzscjfefY02RNWncrbr9GBTOYWIJFwKyWmS4p3UeBeCt7Xa-LbXflIIqu246jCuElztxk2m633-WPa2-rcc1iS_aKt4rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1393798974</pqid></control><display><type>article</type><title>Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems</title><source>American Physical Society Journals</source><creator>Zeeb, Steffen ; Dahms, Thomas ; Flunkert, Valentin ; Schöll, Eckehard ; Kanter, Ido ; Kinzel, Wolfgang</creator><creatorcontrib>Zeeb, Steffen ; Dahms, Thomas ; Flunkert, Valentin ; Schöll, Eckehard ; Kanter, Ido ; Kinzel, Wolfgang</creatorcontrib><description>The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps, we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore, the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.87.042910</identifier><identifier>PMID: 23679492</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2013-04, Vol.87 (4), p.042910-042910, Article 042910</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-7fdecb744204571d4373ff400ec8b97592ecc6228e404b08731464a50b9516823</citedby><cites>FETCH-LOGICAL-c303t-7fdecb744204571d4373ff400ec8b97592ecc6228e404b08731464a50b9516823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23679492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeeb, Steffen</creatorcontrib><creatorcontrib>Dahms, Thomas</creatorcontrib><creatorcontrib>Flunkert, Valentin</creatorcontrib><creatorcontrib>Schöll, Eckehard</creatorcontrib><creatorcontrib>Kanter, Ido</creatorcontrib><creatorcontrib>Kinzel, Wolfgang</creatorcontrib><title>Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps, we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore, the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9UEtLxDAYDKK4uvoHPEiPXrrm2SRHWdcHLCii55CmKa20zZqkQv31Zt1dT98w38zADABXCC4QguT2tZnCm_1eLQRfQIolgkfgDDEGc0x4cbzFROaEMzYD5yF8QkgwEfQUzDApuKQSnwFz3wbjhtgOoxtDpmP02kTns6rt7RBaNyQui43NwjSYxruh_dFxSydh-v9BV2cxyfPKdnqyVWYa7WJrkiVE24cLcFLrLtjL_Z2Dj4fV-_IpX788Pi_v1rkhkMSc15U1JacUQ8o4qijhpK4phNaIUnImsTWmwFhYCmkJBSeIFlQzWEqGCoHJHNzscjfefY02RNWncrbr9GBTOYWIJFwKyWmS4p3UeBeCt7Xa-LbXflIIqu246jCuElztxk2m633-WPa2-rcc1iS_aKt4rQ</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Zeeb, Steffen</creator><creator>Dahms, Thomas</creator><creator>Flunkert, Valentin</creator><creator>Schöll, Eckehard</creator><creator>Kanter, Ido</creator><creator>Kinzel, Wolfgang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201304</creationdate><title>Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems</title><author>Zeeb, Steffen ; Dahms, Thomas ; Flunkert, Valentin ; Schöll, Eckehard ; Kanter, Ido ; Kinzel, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-7fdecb744204571d4373ff400ec8b97592ecc6228e404b08731464a50b9516823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeeb, Steffen</creatorcontrib><creatorcontrib>Dahms, Thomas</creatorcontrib><creatorcontrib>Flunkert, Valentin</creatorcontrib><creatorcontrib>Schöll, Eckehard</creatorcontrib><creatorcontrib>Kanter, Ido</creatorcontrib><creatorcontrib>Kinzel, Wolfgang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeeb, Steffen</au><au>Dahms, Thomas</au><au>Flunkert, Valentin</au><au>Schöll, Eckehard</au><au>Kanter, Ido</au><au>Kinzel, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2013-04</date><risdate>2013</risdate><volume>87</volume><issue>4</issue><spage>042910</spage><epage>042910</epage><pages>042910-042910</pages><artnum>042910</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps, we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore, the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated.</abstract><cop>United States</cop><pmid>23679492</pmid><doi>10.1103/PhysRevE.87.042910</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2013-04, Vol.87 (4), p.042910-042910, Article 042910
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_1393798974
source American Physical Society Journals
title Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discontinuous%20attractor%20dimension%20at%20the%20synchronization%20transition%20of%20time-delayed%20chaotic%20systems&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Zeeb,%20Steffen&rft.date=2013-04&rft.volume=87&rft.issue=4&rft.spage=042910&rft.epage=042910&rft.pages=042910-042910&rft.artnum=042910&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.87.042910&rft_dat=%3Cproquest_cross%3E1393798974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1393798974&rft_id=info:pmid/23679492&rfr_iscdi=true