Unifying autocatalytic and zeroth-order branching models for growing actin networks
The directed polymerization of actin networks is an essential element of many biological processes, including cell migration. Different theoretical models considering the interplay between the underlying processes of polymerization, capping, and branching have resulted in conflicting predictions. On...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2013-04, Vol.87 (4), p.040701-040701, Article 040701 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 040701 |
---|---|
container_issue | 4 |
container_start_page | 040701 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 87 |
creator | Weichsel, Julian Baczynski, Krzysztof Schwarz, Ulrich S |
description | The directed polymerization of actin networks is an essential element of many biological processes, including cell migration. Different theoretical models considering the interplay between the underlying processes of polymerization, capping, and branching have resulted in conflicting predictions. One of the main reasons for this discrepancy is the assumption of a branching reaction that is either first order (autocatalytic) or zeroth order in the number of existing filaments. Here we introduce a unifying framework from which the two established scenarios emerge as limiting cases for low and high filament numbers. A smooth transition between the two cases is found at intermediate conditions. We also derive a threshold for the capping rate above which autocatalytic growth is predicted at sufficiently low filament number. Below the threshold, zeroth-order characteristics are predicted to dominate the dynamics of the network for all accessible filament numbers. Together, these mechanisms allow cells to grow stable actin networks over a large range of different conditions. |
doi_str_mv | 10.1103/PhysRevE.87.040701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1393798050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1393798050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-96252964c529b7e2c5c74513aef3c5e873dd58b8c435674cf0e9f3c411ccfc7a3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqXwAyxQlmxS7EwcJ0tU8ZIqgYCuLWfitIEkLrZDFb6elLZsZkaac-_iEHLJ6JQxCjcvq9696u-7aSqmNKaCsiMyZpzTMAKRHG9vyEIQnI_ImXMflEIEaXxKRhEkIoOEjcnboq3KvmqXgeq8QeVV3fsKA9UWwY-2xq9CYwttg9yqFldbsDGFrl1QGhssrdn8ZdFXbdBqvzH2052Tk1LVTl_s94Qs7u_eZ4_h_PnhaXY7DxFi4cMsiXiUJTEOMxc6Qo4i5gyULgG5TgUUBU_zFGPgiYixpDobPjFjiCUKBRNyvetdW_PVaedlUznUda1abTonGWQgspRyOqDRDkVrnLO6lGtbNcr2klG5lSkPMmUq5E7mELra93d5o4v_yMEe_AJ__XMO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1393798050</pqid></control><display><type>article</type><title>Unifying autocatalytic and zeroth-order branching models for growing actin networks</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Weichsel, Julian ; Baczynski, Krzysztof ; Schwarz, Ulrich S</creator><creatorcontrib>Weichsel, Julian ; Baczynski, Krzysztof ; Schwarz, Ulrich S</creatorcontrib><description>The directed polymerization of actin networks is an essential element of many biological processes, including cell migration. Different theoretical models considering the interplay between the underlying processes of polymerization, capping, and branching have resulted in conflicting predictions. One of the main reasons for this discrepancy is the assumption of a branching reaction that is either first order (autocatalytic) or zeroth order in the number of existing filaments. Here we introduce a unifying framework from which the two established scenarios emerge as limiting cases for low and high filament numbers. A smooth transition between the two cases is found at intermediate conditions. We also derive a threshold for the capping rate above which autocatalytic growth is predicted at sufficiently low filament number. Below the threshold, zeroth-order characteristics are predicted to dominate the dynamics of the network for all accessible filament numbers. Together, these mechanisms allow cells to grow stable actin networks over a large range of different conditions.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.87.040701</identifier><identifier>PMID: 23679361</identifier><language>eng</language><publisher>United States</publisher><subject>Actins - chemistry ; Actins - metabolism ; Biocatalysis ; Kinetics ; Models, Molecular ; Protein Multimerization ; Protein Structure, Quaternary</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2013-04, Vol.87 (4), p.040701-040701, Article 040701</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-96252964c529b7e2c5c74513aef3c5e873dd58b8c435674cf0e9f3c411ccfc7a3</citedby><cites>FETCH-LOGICAL-c347t-96252964c529b7e2c5c74513aef3c5e873dd58b8c435674cf0e9f3c411ccfc7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23679361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weichsel, Julian</creatorcontrib><creatorcontrib>Baczynski, Krzysztof</creatorcontrib><creatorcontrib>Schwarz, Ulrich S</creatorcontrib><title>Unifying autocatalytic and zeroth-order branching models for growing actin networks</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The directed polymerization of actin networks is an essential element of many biological processes, including cell migration. Different theoretical models considering the interplay between the underlying processes of polymerization, capping, and branching have resulted in conflicting predictions. One of the main reasons for this discrepancy is the assumption of a branching reaction that is either first order (autocatalytic) or zeroth order in the number of existing filaments. Here we introduce a unifying framework from which the two established scenarios emerge as limiting cases for low and high filament numbers. A smooth transition between the two cases is found at intermediate conditions. We also derive a threshold for the capping rate above which autocatalytic growth is predicted at sufficiently low filament number. Below the threshold, zeroth-order characteristics are predicted to dominate the dynamics of the network for all accessible filament numbers. Together, these mechanisms allow cells to grow stable actin networks over a large range of different conditions.</description><subject>Actins - chemistry</subject><subject>Actins - metabolism</subject><subject>Biocatalysis</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Quaternary</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0EoqXwAyxQlmxS7EwcJ0tU8ZIqgYCuLWfitIEkLrZDFb6elLZsZkaac-_iEHLJ6JQxCjcvq9696u-7aSqmNKaCsiMyZpzTMAKRHG9vyEIQnI_ImXMflEIEaXxKRhEkIoOEjcnboq3KvmqXgeq8QeVV3fsKA9UWwY-2xq9CYwttg9yqFldbsDGFrl1QGhssrdn8ZdFXbdBqvzH2052Tk1LVTl_s94Qs7u_eZ4_h_PnhaXY7DxFi4cMsiXiUJTEOMxc6Qo4i5gyULgG5TgUUBU_zFGPgiYixpDobPjFjiCUKBRNyvetdW_PVaedlUznUda1abTonGWQgspRyOqDRDkVrnLO6lGtbNcr2klG5lSkPMmUq5E7mELra93d5o4v_yMEe_AJ__XMO</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Weichsel, Julian</creator><creator>Baczynski, Krzysztof</creator><creator>Schwarz, Ulrich S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201304</creationdate><title>Unifying autocatalytic and zeroth-order branching models for growing actin networks</title><author>Weichsel, Julian ; Baczynski, Krzysztof ; Schwarz, Ulrich S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-96252964c529b7e2c5c74513aef3c5e873dd58b8c435674cf0e9f3c411ccfc7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actins - chemistry</topic><topic>Actins - metabolism</topic><topic>Biocatalysis</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Quaternary</topic><toplevel>online_resources</toplevel><creatorcontrib>Weichsel, Julian</creatorcontrib><creatorcontrib>Baczynski, Krzysztof</creatorcontrib><creatorcontrib>Schwarz, Ulrich S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weichsel, Julian</au><au>Baczynski, Krzysztof</au><au>Schwarz, Ulrich S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unifying autocatalytic and zeroth-order branching models for growing actin networks</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2013-04</date><risdate>2013</risdate><volume>87</volume><issue>4</issue><spage>040701</spage><epage>040701</epage><pages>040701-040701</pages><artnum>040701</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The directed polymerization of actin networks is an essential element of many biological processes, including cell migration. Different theoretical models considering the interplay between the underlying processes of polymerization, capping, and branching have resulted in conflicting predictions. One of the main reasons for this discrepancy is the assumption of a branching reaction that is either first order (autocatalytic) or zeroth order in the number of existing filaments. Here we introduce a unifying framework from which the two established scenarios emerge as limiting cases for low and high filament numbers. A smooth transition between the two cases is found at intermediate conditions. We also derive a threshold for the capping rate above which autocatalytic growth is predicted at sufficiently low filament number. Below the threshold, zeroth-order characteristics are predicted to dominate the dynamics of the network for all accessible filament numbers. Together, these mechanisms allow cells to grow stable actin networks over a large range of different conditions.</abstract><cop>United States</cop><pmid>23679361</pmid><doi>10.1103/PhysRevE.87.040701</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2013-04, Vol.87 (4), p.040701-040701, Article 040701 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_1393798050 |
source | MEDLINE; American Physical Society Journals |
subjects | Actins - chemistry Actins - metabolism Biocatalysis Kinetics Models, Molecular Protein Multimerization Protein Structure, Quaternary |
title | Unifying autocatalytic and zeroth-order branching models for growing actin networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unifying%20autocatalytic%20and%20zeroth-order%20branching%20models%20for%20growing%20actin%20networks&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Weichsel,%20Julian&rft.date=2013-04&rft.volume=87&rft.issue=4&rft.spage=040701&rft.epage=040701&rft.pages=040701-040701&rft.artnum=040701&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.87.040701&rft_dat=%3Cproquest_cross%3E1393798050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1393798050&rft_id=info:pmid/23679361&rfr_iscdi=true |