Unifying autocatalytic and zeroth-order branching models for growing actin networks

The directed polymerization of actin networks is an essential element of many biological processes, including cell migration. Different theoretical models considering the interplay between the underlying processes of polymerization, capping, and branching have resulted in conflicting predictions. On...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2013-04, Vol.87 (4), p.040701-040701, Article 040701
Hauptverfasser: Weichsel, Julian, Baczynski, Krzysztof, Schwarz, Ulrich S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 040701
container_issue 4
container_start_page 040701
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 87
creator Weichsel, Julian
Baczynski, Krzysztof
Schwarz, Ulrich S
description The directed polymerization of actin networks is an essential element of many biological processes, including cell migration. Different theoretical models considering the interplay between the underlying processes of polymerization, capping, and branching have resulted in conflicting predictions. One of the main reasons for this discrepancy is the assumption of a branching reaction that is either first order (autocatalytic) or zeroth order in the number of existing filaments. Here we introduce a unifying framework from which the two established scenarios emerge as limiting cases for low and high filament numbers. A smooth transition between the two cases is found at intermediate conditions. We also derive a threshold for the capping rate above which autocatalytic growth is predicted at sufficiently low filament number. Below the threshold, zeroth-order characteristics are predicted to dominate the dynamics of the network for all accessible filament numbers. Together, these mechanisms allow cells to grow stable actin networks over a large range of different conditions.
doi_str_mv 10.1103/PhysRevE.87.040701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1393798050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1393798050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-96252964c529b7e2c5c74513aef3c5e873dd58b8c435674cf0e9f3c411ccfc7a3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqXwAyxQlmxS7EwcJ0tU8ZIqgYCuLWfitIEkLrZDFb6elLZsZkaac-_iEHLJ6JQxCjcvq9696u-7aSqmNKaCsiMyZpzTMAKRHG9vyEIQnI_ImXMflEIEaXxKRhEkIoOEjcnboq3KvmqXgeq8QeVV3fsKA9UWwY-2xq9CYwttg9yqFldbsDGFrl1QGhssrdn8ZdFXbdBqvzH2052Tk1LVTl_s94Qs7u_eZ4_h_PnhaXY7DxFi4cMsiXiUJTEOMxc6Qo4i5gyULgG5TgUUBU_zFGPgiYixpDobPjFjiCUKBRNyvetdW_PVaedlUznUda1abTonGWQgspRyOqDRDkVrnLO6lGtbNcr2klG5lSkPMmUq5E7mELra93d5o4v_yMEe_AJ__XMO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1393798050</pqid></control><display><type>article</type><title>Unifying autocatalytic and zeroth-order branching models for growing actin networks</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Weichsel, Julian ; Baczynski, Krzysztof ; Schwarz, Ulrich S</creator><creatorcontrib>Weichsel, Julian ; Baczynski, Krzysztof ; Schwarz, Ulrich S</creatorcontrib><description>The directed polymerization of actin networks is an essential element of many biological processes, including cell migration. Different theoretical models considering the interplay between the underlying processes of polymerization, capping, and branching have resulted in conflicting predictions. One of the main reasons for this discrepancy is the assumption of a branching reaction that is either first order (autocatalytic) or zeroth order in the number of existing filaments. Here we introduce a unifying framework from which the two established scenarios emerge as limiting cases for low and high filament numbers. A smooth transition between the two cases is found at intermediate conditions. We also derive a threshold for the capping rate above which autocatalytic growth is predicted at sufficiently low filament number. Below the threshold, zeroth-order characteristics are predicted to dominate the dynamics of the network for all accessible filament numbers. Together, these mechanisms allow cells to grow stable actin networks over a large range of different conditions.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.87.040701</identifier><identifier>PMID: 23679361</identifier><language>eng</language><publisher>United States</publisher><subject>Actins - chemistry ; Actins - metabolism ; Biocatalysis ; Kinetics ; Models, Molecular ; Protein Multimerization ; Protein Structure, Quaternary</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2013-04, Vol.87 (4), p.040701-040701, Article 040701</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-96252964c529b7e2c5c74513aef3c5e873dd58b8c435674cf0e9f3c411ccfc7a3</citedby><cites>FETCH-LOGICAL-c347t-96252964c529b7e2c5c74513aef3c5e873dd58b8c435674cf0e9f3c411ccfc7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23679361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weichsel, Julian</creatorcontrib><creatorcontrib>Baczynski, Krzysztof</creatorcontrib><creatorcontrib>Schwarz, Ulrich S</creatorcontrib><title>Unifying autocatalytic and zeroth-order branching models for growing actin networks</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The directed polymerization of actin networks is an essential element of many biological processes, including cell migration. Different theoretical models considering the interplay between the underlying processes of polymerization, capping, and branching have resulted in conflicting predictions. One of the main reasons for this discrepancy is the assumption of a branching reaction that is either first order (autocatalytic) or zeroth order in the number of existing filaments. Here we introduce a unifying framework from which the two established scenarios emerge as limiting cases for low and high filament numbers. A smooth transition between the two cases is found at intermediate conditions. We also derive a threshold for the capping rate above which autocatalytic growth is predicted at sufficiently low filament number. Below the threshold, zeroth-order characteristics are predicted to dominate the dynamics of the network for all accessible filament numbers. Together, these mechanisms allow cells to grow stable actin networks over a large range of different conditions.</description><subject>Actins - chemistry</subject><subject>Actins - metabolism</subject><subject>Biocatalysis</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Quaternary</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0EoqXwAyxQlmxS7EwcJ0tU8ZIqgYCuLWfitIEkLrZDFb6elLZsZkaac-_iEHLJ6JQxCjcvq9696u-7aSqmNKaCsiMyZpzTMAKRHG9vyEIQnI_ImXMflEIEaXxKRhEkIoOEjcnboq3KvmqXgeq8QeVV3fsKA9UWwY-2xq9CYwttg9yqFldbsDGFrl1QGhssrdn8ZdFXbdBqvzH2052Tk1LVTl_s94Qs7u_eZ4_h_PnhaXY7DxFi4cMsiXiUJTEOMxc6Qo4i5gyULgG5TgUUBU_zFGPgiYixpDobPjFjiCUKBRNyvetdW_PVaedlUznUda1abTonGWQgspRyOqDRDkVrnLO6lGtbNcr2klG5lSkPMmUq5E7mELra93d5o4v_yMEe_AJ__XMO</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Weichsel, Julian</creator><creator>Baczynski, Krzysztof</creator><creator>Schwarz, Ulrich S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201304</creationdate><title>Unifying autocatalytic and zeroth-order branching models for growing actin networks</title><author>Weichsel, Julian ; Baczynski, Krzysztof ; Schwarz, Ulrich S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-96252964c529b7e2c5c74513aef3c5e873dd58b8c435674cf0e9f3c411ccfc7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actins - chemistry</topic><topic>Actins - metabolism</topic><topic>Biocatalysis</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Quaternary</topic><toplevel>online_resources</toplevel><creatorcontrib>Weichsel, Julian</creatorcontrib><creatorcontrib>Baczynski, Krzysztof</creatorcontrib><creatorcontrib>Schwarz, Ulrich S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weichsel, Julian</au><au>Baczynski, Krzysztof</au><au>Schwarz, Ulrich S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unifying autocatalytic and zeroth-order branching models for growing actin networks</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2013-04</date><risdate>2013</risdate><volume>87</volume><issue>4</issue><spage>040701</spage><epage>040701</epage><pages>040701-040701</pages><artnum>040701</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The directed polymerization of actin networks is an essential element of many biological processes, including cell migration. Different theoretical models considering the interplay between the underlying processes of polymerization, capping, and branching have resulted in conflicting predictions. One of the main reasons for this discrepancy is the assumption of a branching reaction that is either first order (autocatalytic) or zeroth order in the number of existing filaments. Here we introduce a unifying framework from which the two established scenarios emerge as limiting cases for low and high filament numbers. A smooth transition between the two cases is found at intermediate conditions. We also derive a threshold for the capping rate above which autocatalytic growth is predicted at sufficiently low filament number. Below the threshold, zeroth-order characteristics are predicted to dominate the dynamics of the network for all accessible filament numbers. Together, these mechanisms allow cells to grow stable actin networks over a large range of different conditions.</abstract><cop>United States</cop><pmid>23679361</pmid><doi>10.1103/PhysRevE.87.040701</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2013-04, Vol.87 (4), p.040701-040701, Article 040701
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_1393798050
source MEDLINE; American Physical Society Journals
subjects Actins - chemistry
Actins - metabolism
Biocatalysis
Kinetics
Models, Molecular
Protein Multimerization
Protein Structure, Quaternary
title Unifying autocatalytic and zeroth-order branching models for growing actin networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unifying%20autocatalytic%20and%20zeroth-order%20branching%20models%20for%20growing%20actin%20networks&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Weichsel,%20Julian&rft.date=2013-04&rft.volume=87&rft.issue=4&rft.spage=040701&rft.epage=040701&rft.pages=040701-040701&rft.artnum=040701&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.87.040701&rft_dat=%3Cproquest_cross%3E1393798050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1393798050&rft_id=info:pmid/23679361&rfr_iscdi=true