Room-temperature proton transport and its effect on thermopower in a solid ionic semiconductor, TTFCOONH sub(4)

Ammonium proton in a solid ionic semiconductor, TTFCOONH sub(4), is shown to be mobile under anhydrous conditions at room temperature by the hydrogen concentration cell method. Isotope substituted TTFCOOND sub(4) exhibits a 2.2 H/D isotope effect in ion carrier mobility with TTFCOONH sub(4). First-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2013-03, Vol.1 (16), p.5089-5096
Hauptverfasser: Kobayashi, Yuka, Fujii, Takenori, Terasaki, Ichiro, Kino, Hiori, Jin, Yongcheng, Hibino, Takashi, Kobayashi, Tetsuya, Nishibori, Eiji, Sawa, Hiroshi, Yoshikawa, Hideki, Terauchi, Takeshi, Sumi, Satoshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5096
container_issue 16
container_start_page 5089
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 1
creator Kobayashi, Yuka
Fujii, Takenori
Terasaki, Ichiro
Kino, Hiori
Jin, Yongcheng
Hibino, Takashi
Kobayashi, Tetsuya
Nishibori, Eiji
Sawa, Hiroshi
Yoshikawa, Hideki
Terauchi, Takeshi
Sumi, Satoshi
description Ammonium proton in a solid ionic semiconductor, TTFCOONH sub(4), is shown to be mobile under anhydrous conditions at room temperature by the hydrogen concentration cell method. Isotope substituted TTFCOOND sub(4) exhibits a 2.2 H/D isotope effect in ion carrier mobility with TTFCOONH sub(4). First-principles calculations reveal that an efficient proton-transfer pathway vialow-barrier N...H super(+)...N hydrogen bonds reduces the activation energy to 0.12 eV, which is quite small and comparable to that reported in a bulk water system. The ac conductivity of TTFCOONH sub(4) and TTFCOOND sub(4) is similar at room temperature, reflecting similar hole carrier concentrations. In sharp contrast, the thermopower exhibits a large isotope effect: TTFCOONH sub(4) shows 260 mu V K super(-1), which is twice as large as that predicted by the hole carrier concentration and the value of TTFCOOND sub(4), with 138 mu V K super(-1). The 1.9 H/D isotope effect in thermopower closely relates to the 2.2 H/D isotope effect in ion carrier mobility. Proton carriers in the temperature gradient enhance thermopower without cancelling out the effect of holes in the solid state owing to possession of the same positive charge.
doi_str_mv 10.1039/c3ta00011g
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372658578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372658578</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_13726585783</originalsourceid><addsrcrecordid>eNqVzUFLw0AQBeBFFCzai79gjhWMzjZNsjkXS08tSO5l3U50JdmJO7v4940g3j29B--Dp9SdxkeNZfvkymQRUeu3C7VYY4VFs2nry79uzLVainzMBg1i3bYLxS_MY5FonCjalCPBFDlxgBRtkIljAhvO4JMA9T25BD_bO8WRJ_6iCD6ABeHBz4iDdyA0esfhnF3i-ABdt9sej4c9SH5dbe5v1VVvB6Hlb96o1e652-6L-fYzk6TT6MXRMNhAnOWky2ZdV6ZqTPkP-g0TtFRN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372658578</pqid></control><display><type>article</type><title>Room-temperature proton transport and its effect on thermopower in a solid ionic semiconductor, TTFCOONH sub(4)</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kobayashi, Yuka ; Fujii, Takenori ; Terasaki, Ichiro ; Kino, Hiori ; Jin, Yongcheng ; Hibino, Takashi ; Kobayashi, Tetsuya ; Nishibori, Eiji ; Sawa, Hiroshi ; Yoshikawa, Hideki ; Terauchi, Takeshi ; Sumi, Satoshi</creator><creatorcontrib>Kobayashi, Yuka ; Fujii, Takenori ; Terasaki, Ichiro ; Kino, Hiori ; Jin, Yongcheng ; Hibino, Takashi ; Kobayashi, Tetsuya ; Nishibori, Eiji ; Sawa, Hiroshi ; Yoshikawa, Hideki ; Terauchi, Takeshi ; Sumi, Satoshi</creatorcontrib><description>Ammonium proton in a solid ionic semiconductor, TTFCOONH sub(4), is shown to be mobile under anhydrous conditions at room temperature by the hydrogen concentration cell method. Isotope substituted TTFCOOND sub(4) exhibits a 2.2 H/D isotope effect in ion carrier mobility with TTFCOONH sub(4). First-principles calculations reveal that an efficient proton-transfer pathway vialow-barrier N...H super(+)...N hydrogen bonds reduces the activation energy to 0.12 eV, which is quite small and comparable to that reported in a bulk water system. The ac conductivity of TTFCOONH sub(4) and TTFCOOND sub(4) is similar at room temperature, reflecting similar hole carrier concentrations. In sharp contrast, the thermopower exhibits a large isotope effect: TTFCOONH sub(4) shows 260 mu V K super(-1), which is twice as large as that predicted by the hole carrier concentration and the value of TTFCOOND sub(4), with 138 mu V K super(-1). The 1.9 H/D isotope effect in thermopower closely relates to the 2.2 H/D isotope effect in ion carrier mobility. Proton carriers in the temperature gradient enhance thermopower without cancelling out the effect of holes in the solid state owing to possession of the same positive charge.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c3ta00011g</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2013-03, Vol.1 (16), p.5089-5096</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kobayashi, Yuka</creatorcontrib><creatorcontrib>Fujii, Takenori</creatorcontrib><creatorcontrib>Terasaki, Ichiro</creatorcontrib><creatorcontrib>Kino, Hiori</creatorcontrib><creatorcontrib>Jin, Yongcheng</creatorcontrib><creatorcontrib>Hibino, Takashi</creatorcontrib><creatorcontrib>Kobayashi, Tetsuya</creatorcontrib><creatorcontrib>Nishibori, Eiji</creatorcontrib><creatorcontrib>Sawa, Hiroshi</creatorcontrib><creatorcontrib>Yoshikawa, Hideki</creatorcontrib><creatorcontrib>Terauchi, Takeshi</creatorcontrib><creatorcontrib>Sumi, Satoshi</creatorcontrib><title>Room-temperature proton transport and its effect on thermopower in a solid ionic semiconductor, TTFCOONH sub(4)</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Ammonium proton in a solid ionic semiconductor, TTFCOONH sub(4), is shown to be mobile under anhydrous conditions at room temperature by the hydrogen concentration cell method. Isotope substituted TTFCOOND sub(4) exhibits a 2.2 H/D isotope effect in ion carrier mobility with TTFCOONH sub(4). First-principles calculations reveal that an efficient proton-transfer pathway vialow-barrier N...H super(+)...N hydrogen bonds reduces the activation energy to 0.12 eV, which is quite small and comparable to that reported in a bulk water system. The ac conductivity of TTFCOONH sub(4) and TTFCOOND sub(4) is similar at room temperature, reflecting similar hole carrier concentrations. In sharp contrast, the thermopower exhibits a large isotope effect: TTFCOONH sub(4) shows 260 mu V K super(-1), which is twice as large as that predicted by the hole carrier concentration and the value of TTFCOOND sub(4), with 138 mu V K super(-1). The 1.9 H/D isotope effect in thermopower closely relates to the 2.2 H/D isotope effect in ion carrier mobility. Proton carriers in the temperature gradient enhance thermopower without cancelling out the effect of holes in the solid state owing to possession of the same positive charge.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVzUFLw0AQBeBFFCzai79gjhWMzjZNsjkXS08tSO5l3U50JdmJO7v4940g3j29B--Dp9SdxkeNZfvkymQRUeu3C7VYY4VFs2nry79uzLVainzMBg1i3bYLxS_MY5FonCjalCPBFDlxgBRtkIljAhvO4JMA9T25BD_bO8WRJ_6iCD6ABeHBz4iDdyA0esfhnF3i-ABdt9sej4c9SH5dbe5v1VVvB6Hlb96o1e652-6L-fYzk6TT6MXRMNhAnOWky2ZdV6ZqTPkP-g0TtFRN</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Kobayashi, Yuka</creator><creator>Fujii, Takenori</creator><creator>Terasaki, Ichiro</creator><creator>Kino, Hiori</creator><creator>Jin, Yongcheng</creator><creator>Hibino, Takashi</creator><creator>Kobayashi, Tetsuya</creator><creator>Nishibori, Eiji</creator><creator>Sawa, Hiroshi</creator><creator>Yoshikawa, Hideki</creator><creator>Terauchi, Takeshi</creator><creator>Sumi, Satoshi</creator><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20130301</creationdate><title>Room-temperature proton transport and its effect on thermopower in a solid ionic semiconductor, TTFCOONH sub(4)</title><author>Kobayashi, Yuka ; Fujii, Takenori ; Terasaki, Ichiro ; Kino, Hiori ; Jin, Yongcheng ; Hibino, Takashi ; Kobayashi, Tetsuya ; Nishibori, Eiji ; Sawa, Hiroshi ; Yoshikawa, Hideki ; Terauchi, Takeshi ; Sumi, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_13726585783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Yuka</creatorcontrib><creatorcontrib>Fujii, Takenori</creatorcontrib><creatorcontrib>Terasaki, Ichiro</creatorcontrib><creatorcontrib>Kino, Hiori</creatorcontrib><creatorcontrib>Jin, Yongcheng</creatorcontrib><creatorcontrib>Hibino, Takashi</creatorcontrib><creatorcontrib>Kobayashi, Tetsuya</creatorcontrib><creatorcontrib>Nishibori, Eiji</creatorcontrib><creatorcontrib>Sawa, Hiroshi</creatorcontrib><creatorcontrib>Yoshikawa, Hideki</creatorcontrib><creatorcontrib>Terauchi, Takeshi</creatorcontrib><creatorcontrib>Sumi, Satoshi</creatorcontrib><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Yuka</au><au>Fujii, Takenori</au><au>Terasaki, Ichiro</au><au>Kino, Hiori</au><au>Jin, Yongcheng</au><au>Hibino, Takashi</au><au>Kobayashi, Tetsuya</au><au>Nishibori, Eiji</au><au>Sawa, Hiroshi</au><au>Yoshikawa, Hideki</au><au>Terauchi, Takeshi</au><au>Sumi, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature proton transport and its effect on thermopower in a solid ionic semiconductor, TTFCOONH sub(4)</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>1</volume><issue>16</issue><spage>5089</spage><epage>5096</epage><pages>5089-5096</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Ammonium proton in a solid ionic semiconductor, TTFCOONH sub(4), is shown to be mobile under anhydrous conditions at room temperature by the hydrogen concentration cell method. Isotope substituted TTFCOOND sub(4) exhibits a 2.2 H/D isotope effect in ion carrier mobility with TTFCOONH sub(4). First-principles calculations reveal that an efficient proton-transfer pathway vialow-barrier N...H super(+)...N hydrogen bonds reduces the activation energy to 0.12 eV, which is quite small and comparable to that reported in a bulk water system. The ac conductivity of TTFCOONH sub(4) and TTFCOOND sub(4) is similar at room temperature, reflecting similar hole carrier concentrations. In sharp contrast, the thermopower exhibits a large isotope effect: TTFCOONH sub(4) shows 260 mu V K super(-1), which is twice as large as that predicted by the hole carrier concentration and the value of TTFCOOND sub(4), with 138 mu V K super(-1). The 1.9 H/D isotope effect in thermopower closely relates to the 2.2 H/D isotope effect in ion carrier mobility. Proton carriers in the temperature gradient enhance thermopower without cancelling out the effect of holes in the solid state owing to possession of the same positive charge.</abstract><doi>10.1039/c3ta00011g</doi></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2013-03, Vol.1 (16), p.5089-5096
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_miscellaneous_1372658578
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Room-temperature proton transport and its effect on thermopower in a solid ionic semiconductor, TTFCOONH sub(4)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20proton%20transport%20and%20its%20effect%20on%20thermopower%20in%20a%20solid%20ionic%20semiconductor,%20TTFCOONH%20sub(4)&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kobayashi,%20Yuka&rft.date=2013-03-01&rft.volume=1&rft.issue=16&rft.spage=5089&rft.epage=5096&rft.pages=5089-5096&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c3ta00011g&rft_dat=%3Cproquest%3E1372658578%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372658578&rft_id=info:pmid/&rfr_iscdi=true