Variable selection and model choice in structured survival models

We aim at modeling the survival time of intensive care patients suffering from severe sepsis. The nature of the problem requires a flexible model that allows to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2013-06, Vol.28 (3), p.1079-1101
Hauptverfasser: Hofner, Benjamin, Hothorn, Torsten, Kneib, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1101
container_issue 3
container_start_page 1079
container_title Computational statistics
container_volume 28
creator Hofner, Benjamin
Hothorn, Torsten
Kneib, Thomas
description We aim at modeling the survival time of intensive care patients suffering from severe sepsis. The nature of the problem requires a flexible model that allows to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexible but additional difficulties arise when model choice and variable selection are desired. In particular, it has to be decided which covariates should be assigned time-varying effects or whether linear modeling is sufficient for a given covariate. Component-wise boosting provides a means of likelihood-based model fitting that enables simultaneous variable selection and model choice. We introduce a component-wise, likelihood-based boosting algorithm for survival data that permits the inclusion of both parametric and nonparametric time-varying effects as well as nonparametric effects of continuous covariates utilizing penalized splines as the main modeling technique. An empirical evaluation of the methodology precedes the model building for the severe sepsis data. A software implementation is available to the interested reader.
doi_str_mv 10.1007/s00180-012-0337-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372656787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372656787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-290af8c1e2423a9cc9a1480d61c882fe952b3718859d938deda15f39c15611a33</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcFN26i7yVNmixl8AsEN-o2ZNJX7dBpNWmH8d_bsS5EcPPu5tzL4zB2inCBAMVlAkADHFBwkLLg2z02Q42SW63MPpuBzSXPQYtDdpTSCkCIQuCMXb34WPtlQ1mihkJfd23m2zJbdyU1WXjr6kBZ3Wapj0Poh0hlloa4qTe-mZh0zA4q3yQ6-ck5e765flrc8YfH2_vF1QMPuTI9FxZ8ZQKSyIX0NgTrMTdQagzGiIqsEktZoDHKllaakkqPqpI2oNKIXso5O59232P3MVDq3bpOgZrGt9QNyaEshFa6MMWInv1BV90Q2_G7kVLafp-RwokKsUspUuXeY7328dMhuJ1UN0l1o1S3k-q2Y0dMnTSy7SvFX8v_lr4ALHt4-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356913569</pqid></control><display><type>article</type><title>Variable selection and model choice in structured survival models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hofner, Benjamin ; Hothorn, Torsten ; Kneib, Thomas</creator><creatorcontrib>Hofner, Benjamin ; Hothorn, Torsten ; Kneib, Thomas</creatorcontrib><description>We aim at modeling the survival time of intensive care patients suffering from severe sepsis. The nature of the problem requires a flexible model that allows to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexible but additional difficulties arise when model choice and variable selection are desired. In particular, it has to be decided which covariates should be assigned time-varying effects or whether linear modeling is sufficient for a given covariate. Component-wise boosting provides a means of likelihood-based model fitting that enables simultaneous variable selection and model choice. We introduce a component-wise, likelihood-based boosting algorithm for survival data that permits the inclusion of both parametric and nonparametric time-varying effects as well as nonparametric effects of continuous covariates utilizing penalized splines as the main modeling technique. An empirical evaluation of the methodology precedes the model building for the severe sepsis data. A software implementation is available to the interested reader.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-012-0337-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Computational mathematics ; Computer programs ; Economic Theory/Quantitative Economics/Mathematical Methods ; Feature selection ; Fungal infections ; Health care delivery ; Inclusions ; Intensive care ; Mathematical models ; Mathematics and Statistics ; Original Paper ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Readers ; Sepsis ; Software ; Splines ; Statistics ; Studies ; Survival ; Variables</subject><ispartof>Computational statistics, 2013-06, Vol.28 (3), p.1079-1101</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-290af8c1e2423a9cc9a1480d61c882fe952b3718859d938deda15f39c15611a33</citedby><cites>FETCH-LOGICAL-c458t-290af8c1e2423a9cc9a1480d61c882fe952b3718859d938deda15f39c15611a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-012-0337-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-012-0337-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hofner, Benjamin</creatorcontrib><creatorcontrib>Hothorn, Torsten</creatorcontrib><creatorcontrib>Kneib, Thomas</creatorcontrib><title>Variable selection and model choice in structured survival models</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>We aim at modeling the survival time of intensive care patients suffering from severe sepsis. The nature of the problem requires a flexible model that allows to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexible but additional difficulties arise when model choice and variable selection are desired. In particular, it has to be decided which covariates should be assigned time-varying effects or whether linear modeling is sufficient for a given covariate. Component-wise boosting provides a means of likelihood-based model fitting that enables simultaneous variable selection and model choice. We introduce a component-wise, likelihood-based boosting algorithm for survival data that permits the inclusion of both parametric and nonparametric time-varying effects as well as nonparametric effects of continuous covariates utilizing penalized splines as the main modeling technique. An empirical evaluation of the methodology precedes the model building for the severe sepsis data. A software implementation is available to the interested reader.</description><subject>Algorithms</subject><subject>Computational mathematics</subject><subject>Computer programs</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Feature selection</subject><subject>Fungal infections</subject><subject>Health care delivery</subject><subject>Inclusions</subject><subject>Intensive care</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Readers</subject><subject>Sepsis</subject><subject>Software</subject><subject>Splines</subject><subject>Statistics</subject><subject>Studies</subject><subject>Survival</subject><subject>Variables</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHcFN26i7yVNmixl8AsEN-o2ZNJX7dBpNWmH8d_bsS5EcPPu5tzL4zB2inCBAMVlAkADHFBwkLLg2z02Q42SW63MPpuBzSXPQYtDdpTSCkCIQuCMXb34WPtlQ1mihkJfd23m2zJbdyU1WXjr6kBZ3Wapj0Poh0hlloa4qTe-mZh0zA4q3yQ6-ck5e765flrc8YfH2_vF1QMPuTI9FxZ8ZQKSyIX0NgTrMTdQagzGiIqsEktZoDHKllaakkqPqpI2oNKIXso5O59232P3MVDq3bpOgZrGt9QNyaEshFa6MMWInv1BV90Q2_G7kVLafp-RwokKsUspUuXeY7328dMhuJ1UN0l1o1S3k-q2Y0dMnTSy7SvFX8v_lr4ALHt4-A</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Hofner, Benjamin</creator><creator>Hothorn, Torsten</creator><creator>Kneib, Thomas</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130601</creationdate><title>Variable selection and model choice in structured survival models</title><author>Hofner, Benjamin ; Hothorn, Torsten ; Kneib, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-290af8c1e2423a9cc9a1480d61c882fe952b3718859d938deda15f39c15611a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computational mathematics</topic><topic>Computer programs</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Feature selection</topic><topic>Fungal infections</topic><topic>Health care delivery</topic><topic>Inclusions</topic><topic>Intensive care</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Readers</topic><topic>Sepsis</topic><topic>Software</topic><topic>Splines</topic><topic>Statistics</topic><topic>Studies</topic><topic>Survival</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofner, Benjamin</creatorcontrib><creatorcontrib>Hothorn, Torsten</creatorcontrib><creatorcontrib>Kneib, Thomas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofner, Benjamin</au><au>Hothorn, Torsten</au><au>Kneib, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable selection and model choice in structured survival models</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>28</volume><issue>3</issue><spage>1079</spage><epage>1101</epage><pages>1079-1101</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>We aim at modeling the survival time of intensive care patients suffering from severe sepsis. The nature of the problem requires a flexible model that allows to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexible but additional difficulties arise when model choice and variable selection are desired. In particular, it has to be decided which covariates should be assigned time-varying effects or whether linear modeling is sufficient for a given covariate. Component-wise boosting provides a means of likelihood-based model fitting that enables simultaneous variable selection and model choice. We introduce a component-wise, likelihood-based boosting algorithm for survival data that permits the inclusion of both parametric and nonparametric time-varying effects as well as nonparametric effects of continuous covariates utilizing penalized splines as the main modeling technique. An empirical evaluation of the methodology precedes the model building for the severe sepsis data. A software implementation is available to the interested reader.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00180-012-0337-x</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0943-4062
ispartof Computational statistics, 2013-06, Vol.28 (3), p.1079-1101
issn 0943-4062
1613-9658
language eng
recordid cdi_proquest_miscellaneous_1372656787
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Computational mathematics
Computer programs
Economic Theory/Quantitative Economics/Mathematical Methods
Feature selection
Fungal infections
Health care delivery
Inclusions
Intensive care
Mathematical models
Mathematics and Statistics
Original Paper
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Readers
Sepsis
Software
Splines
Statistics
Studies
Survival
Variables
title Variable selection and model choice in structured survival models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20selection%20and%20model%20choice%20in%20structured%20survival%20models&rft.jtitle=Computational%20statistics&rft.au=Hofner,%20Benjamin&rft.date=2013-06-01&rft.volume=28&rft.issue=3&rft.spage=1079&rft.epage=1101&rft.pages=1079-1101&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-012-0337-x&rft_dat=%3Cproquest_cross%3E1372656787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356913569&rft_id=info:pmid/&rfr_iscdi=true