Mining Order-Preserving Submatrices from Data with Repeated Measurements

Order-preserving submatrices (OPSM's) have been shown useful in capturing concurrent patterns in data when the relative magnitudes of data items are more important than their exact values. For instance, in analyzing gene expression profiles obtained from microarray experiments, the relative mag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2013-07, Vol.25 (7), p.1587-1600
Hauptverfasser: Yip, K. Y., Ben Kao, Xinjie Zhu, Chun Kit Chui, Sau Dan Lee, Cheung, D. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1600
container_issue 7
container_start_page 1587
container_title IEEE transactions on knowledge and data engineering
container_volume 25
creator Yip, K. Y.
Ben Kao
Xinjie Zhu
Chun Kit Chui
Sau Dan Lee
Cheung, D. W.
description Order-preserving submatrices (OPSM's) have been shown useful in capturing concurrent patterns in data when the relative magnitudes of data items are more important than their exact values. For instance, in analyzing gene expression profiles obtained from microarray experiments, the relative magnitudes are important both because they represent the change of gene activities across the experiments, and because there is typically a high level of noise in data that makes the exact values untrustable. To cope with data noise, repeated experiments are often conducted to collect multiple measurements. We propose and study a more robust version of OPSM, where each data item is represented by a set of values obtained from replicated experiments. We call the new problem OPSM-RM (OPSM with repeated measurements). We define OPSM-RM based on a number of practical requirements. We discuss the computational challenges of OPSM-RM and propose a generic mining algorithm. We further propose a series of techniques to speed up two time dominating components of the algorithm. We show the effectiveness and efficiency of our methods through a series of experiments conducted on real microarray data.
doi_str_mv 10.1109/TKDE.2011.167
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372655986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5963678</ieee_id><sourcerecordid>2983907851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-dd088639a6bf5b28fa3b25ca6e758055e69cb24350fce44c6ceb54b68df17a9c3</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgUQpjEwskVhYUuz4e0SlUESrIiiz5TgXSNUkxU5A_HscFTEw3en06O70InRO8IQQrK_Xj7ezSYYJmRAhD9CIcK7SjGhyGHvMSMook8foJIQNxlhJRUZovqyaqnlLVr4Anz55COA_h8FLn9e285WDkJS-rZNb29nkq-rek2fYge2gSJZgQ--hhqYLp-iotNsAZ791jF7vZuvpPF2s7h-mN4vUUS67tCiwUoJqK_KS55kqLc0z7qwAyRXmHIR2ecYox6UDxpxwkHOWC1WURFrt6Bhd7ffufPvRQ-hMXQUH261toO2DIVRmgnMdj4zR5T-6aXvfxO-i4kITSZmKKt0r59sQPJRm56va-m9DsBlyNUOuZsjVxFyjv9j7CgD-LNeCCqnoD57ic1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356917348</pqid></control><display><type>article</type><title>Mining Order-Preserving Submatrices from Data with Repeated Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Yip, K. Y. ; Ben Kao ; Xinjie Zhu ; Chun Kit Chui ; Sau Dan Lee ; Cheung, D. W.</creator><creatorcontrib>Yip, K. Y. ; Ben Kao ; Xinjie Zhu ; Chun Kit Chui ; Sau Dan Lee ; Cheung, D. W.</creatorcontrib><description>Order-preserving submatrices (OPSM's) have been shown useful in capturing concurrent patterns in data when the relative magnitudes of data items are more important than their exact values. For instance, in analyzing gene expression profiles obtained from microarray experiments, the relative magnitudes are important both because they represent the change of gene activities across the experiments, and because there is typically a high level of noise in data that makes the exact values untrustable. To cope with data noise, repeated experiments are often conducted to collect multiple measurements. We propose and study a more robust version of OPSM, where each data item is represented by a set of values obtained from replicated experiments. We call the new problem OPSM-RM (OPSM with repeated measurements). We define OPSM-RM based on a number of practical requirements. We discuss the computational challenges of OPSM-RM and propose a generic mining algorithm. We further propose a series of techniques to speed up two time dominating components of the algorithm. We show the effectiveness and efficiency of our methods through a series of experiments conducted on real microarray data.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2011.167</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arrays ; bioinformatics ; Computation ; Data mining ; Experiments ; Gene expression ; Genes ; mining methods and algorithms ; Noise ; Noise measurement ; Studies</subject><ispartof>IEEE transactions on knowledge and data engineering, 2013-07, Vol.25 (7), p.1587-1600</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-dd088639a6bf5b28fa3b25ca6e758055e69cb24350fce44c6ceb54b68df17a9c3</citedby><cites>FETCH-LOGICAL-c357t-dd088639a6bf5b28fa3b25ca6e758055e69cb24350fce44c6ceb54b68df17a9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5963678$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5963678$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yip, K. Y.</creatorcontrib><creatorcontrib>Ben Kao</creatorcontrib><creatorcontrib>Xinjie Zhu</creatorcontrib><creatorcontrib>Chun Kit Chui</creatorcontrib><creatorcontrib>Sau Dan Lee</creatorcontrib><creatorcontrib>Cheung, D. W.</creatorcontrib><title>Mining Order-Preserving Submatrices from Data with Repeated Measurements</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Order-preserving submatrices (OPSM's) have been shown useful in capturing concurrent patterns in data when the relative magnitudes of data items are more important than their exact values. For instance, in analyzing gene expression profiles obtained from microarray experiments, the relative magnitudes are important both because they represent the change of gene activities across the experiments, and because there is typically a high level of noise in data that makes the exact values untrustable. To cope with data noise, repeated experiments are often conducted to collect multiple measurements. We propose and study a more robust version of OPSM, where each data item is represented by a set of values obtained from replicated experiments. We call the new problem OPSM-RM (OPSM with repeated measurements). We define OPSM-RM based on a number of practical requirements. We discuss the computational challenges of OPSM-RM and propose a generic mining algorithm. We further propose a series of techniques to speed up two time dominating components of the algorithm. We show the effectiveness and efficiency of our methods through a series of experiments conducted on real microarray data.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>bioinformatics</subject><subject>Computation</subject><subject>Data mining</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genes</subject><subject>mining methods and algorithms</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Studies</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0D1PwzAQBmALgUQpjEwskVhYUuz4e0SlUESrIiiz5TgXSNUkxU5A_HscFTEw3en06O70InRO8IQQrK_Xj7ezSYYJmRAhD9CIcK7SjGhyGHvMSMook8foJIQNxlhJRUZovqyaqnlLVr4Anz55COA_h8FLn9e285WDkJS-rZNb29nkq-rek2fYge2gSJZgQ--hhqYLp-iotNsAZ791jF7vZuvpPF2s7h-mN4vUUS67tCiwUoJqK_KS55kqLc0z7qwAyRXmHIR2ecYox6UDxpxwkHOWC1WURFrt6Bhd7ffufPvRQ-hMXQUH261toO2DIVRmgnMdj4zR5T-6aXvfxO-i4kITSZmKKt0r59sQPJRm56va-m9DsBlyNUOuZsjVxFyjv9j7CgD-LNeCCqnoD57ic1g</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Yip, K. Y.</creator><creator>Ben Kao</creator><creator>Xinjie Zhu</creator><creator>Chun Kit Chui</creator><creator>Sau Dan Lee</creator><creator>Cheung, D. W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130701</creationdate><title>Mining Order-Preserving Submatrices from Data with Repeated Measurements</title><author>Yip, K. Y. ; Ben Kao ; Xinjie Zhu ; Chun Kit Chui ; Sau Dan Lee ; Cheung, D. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-dd088639a6bf5b28fa3b25ca6e758055e69cb24350fce44c6ceb54b68df17a9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>bioinformatics</topic><topic>Computation</topic><topic>Data mining</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genes</topic><topic>mining methods and algorithms</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yip, K. Y.</creatorcontrib><creatorcontrib>Ben Kao</creatorcontrib><creatorcontrib>Xinjie Zhu</creatorcontrib><creatorcontrib>Chun Kit Chui</creatorcontrib><creatorcontrib>Sau Dan Lee</creatorcontrib><creatorcontrib>Cheung, D. W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yip, K. Y.</au><au>Ben Kao</au><au>Xinjie Zhu</au><au>Chun Kit Chui</au><au>Sau Dan Lee</au><au>Cheung, D. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining Order-Preserving Submatrices from Data with Repeated Measurements</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>25</volume><issue>7</issue><spage>1587</spage><epage>1600</epage><pages>1587-1600</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Order-preserving submatrices (OPSM's) have been shown useful in capturing concurrent patterns in data when the relative magnitudes of data items are more important than their exact values. For instance, in analyzing gene expression profiles obtained from microarray experiments, the relative magnitudes are important both because they represent the change of gene activities across the experiments, and because there is typically a high level of noise in data that makes the exact values untrustable. To cope with data noise, repeated experiments are often conducted to collect multiple measurements. We propose and study a more robust version of OPSM, where each data item is represented by a set of values obtained from replicated experiments. We call the new problem OPSM-RM (OPSM with repeated measurements). We define OPSM-RM based on a number of practical requirements. We discuss the computational challenges of OPSM-RM and propose a generic mining algorithm. We further propose a series of techniques to speed up two time dominating components of the algorithm. We show the effectiveness and efficiency of our methods through a series of experiments conducted on real microarray data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2011.167</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2013-07, Vol.25 (7), p.1587-1600
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_miscellaneous_1372655986
source IEEE Electronic Library (IEL)
subjects Algorithms
Arrays
bioinformatics
Computation
Data mining
Experiments
Gene expression
Genes
mining methods and algorithms
Noise
Noise measurement
Studies
title Mining Order-Preserving Submatrices from Data with Repeated Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20Order-Preserving%20Submatrices%20from%20Data%20with%20Repeated%20Measurements&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Yip,%20K.%20Y.&rft.date=2013-07-01&rft.volume=25&rft.issue=7&rft.spage=1587&rft.epage=1600&rft.pages=1587-1600&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2011.167&rft_dat=%3Cproquest_RIE%3E2983907851%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356917348&rft_id=info:pmid/&rft_ieee_id=5963678&rfr_iscdi=true