Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method
Bionic engineering has been a focus in the field of robotic researches. Inverse dynamic analysis is significant for the determination of dynamic parameters of bionic robots. The present paper uses a newly developed robot modular named Sambot to construct a caterpillar robotic mechanism, and designs...
Gespeichert in:
Veröffentlicht in: | Robotica 2013-05, Vol.31 (3), p.493-501 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 501 |
---|---|
container_issue | 3 |
container_start_page | 493 |
container_title | Robotica |
container_volume | 31 |
creator | Wei, Hong-Xing Wang, Tian-Miao Liu, Miao Xiao, Jiang-Yang |
description | Bionic engineering has been a focus in the field of robotic researches. Inverse dynamic analysis is significant for the determination of dynamic parameters of bionic robots. The present paper uses a newly developed robot modular named Sambot to construct a caterpillar robotic mechanism, and designs a gait of trapezoidal wave locomotion for it. Two open-link models are put forth to simulate the dynamic behavior of such a locomotion. The inverse dynamic differential equations are derived by Kane's method and are then solved numerically by the Runge–Kutta method of the fourth order. Based on the numerical solutions of these differential equations, the applied joint torques required to produce the harmonic trapezoidal wave locomotion are determined finally, providing us important information on the gait control of the caterpillar robotic mechanism. Finally, the theoretical values of the joint torques are applied onto the present caterpillar mechanism to perform a locomotion experiment, which verifies the effectiveness of the present dynamics analysis. |
doi_str_mv | 10.1017/S0263574712000483 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372655652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574712000483</cupid><sourcerecordid>1372655652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-296f5643b61a824565d8570d824ec95e328b3f8736af514da7fecaa8de0ef173</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMIPYLPEAEvAjuNHRlTxqKjEQFcUOfG5TZXExU5B-fc4agcEYjjd6b6HvjuELim5pYTKuzeSCsZlJmlKCMkUO0ITmok8UUKoYzQZ4WTET9FZCBtCKKOZnKD3efcJPgA2Q6fbusKtM9DU3QrrzsTSzRDqgJ3FGnfwhSvdg9_WTaM99q50_SiBaq27OrS4HPCL7uA6xF2_duYcnVjdBLg49ClaPj4sZ8_J4vVpPrtfJBXjpE_SXFguMlYKqlWaccGN4pKYOEOVc2CpKplVkgltOc2MlhYqrZUBApZKNkU3e9utdx87CH3R1qGCGLIDtwsFZTIVPNqmkXr1i7pxOx_PHFlUKUbzGGSK6J5VeReCB1tsfd1qPxSUFOO_iz__jhp20Oi29LVZwQ_rf1XfhZuBNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318831964</pqid></control><display><type>article</type><title>Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method</title><source>Cambridge University Press Journals Complete</source><creator>Wei, Hong-Xing ; Wang, Tian-Miao ; Liu, Miao ; Xiao, Jiang-Yang</creator><creatorcontrib>Wei, Hong-Xing ; Wang, Tian-Miao ; Liu, Miao ; Xiao, Jiang-Yang</creatorcontrib><description>Bionic engineering has been a focus in the field of robotic researches. Inverse dynamic analysis is significant for the determination of dynamic parameters of bionic robots. The present paper uses a newly developed robot modular named Sambot to construct a caterpillar robotic mechanism, and designs a gait of trapezoidal wave locomotion for it. Two open-link models are put forth to simulate the dynamic behavior of such a locomotion. The inverse dynamic differential equations are derived by Kane's method and are then solved numerically by the Runge–Kutta method of the fourth order. Based on the numerical solutions of these differential equations, the applied joint torques required to produce the harmonic trapezoidal wave locomotion are determined finally, providing us important information on the gait control of the caterpillar robotic mechanism. Finally, the theoretical values of the joint torques are applied onto the present caterpillar mechanism to perform a locomotion experiment, which verifies the effectiveness of the present dynamics analysis.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574712000483</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Caterpillars ; Differential equations ; Dynamics ; Inverse dynamics ; Locomotion ; Mathematical models ; Robotics ; Robots</subject><ispartof>Robotica, 2013-05, Vol.31 (3), p.493-501</ispartof><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-296f5643b61a824565d8570d824ec95e328b3f8736af514da7fecaa8de0ef173</citedby><cites>FETCH-LOGICAL-c350t-296f5643b61a824565d8570d824ec95e328b3f8736af514da7fecaa8de0ef173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574712000483/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Wei, Hong-Xing</creatorcontrib><creatorcontrib>Wang, Tian-Miao</creatorcontrib><creatorcontrib>Liu, Miao</creatorcontrib><creatorcontrib>Xiao, Jiang-Yang</creatorcontrib><title>Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method</title><title>Robotica</title><addtitle>Robotica</addtitle><description>Bionic engineering has been a focus in the field of robotic researches. Inverse dynamic analysis is significant for the determination of dynamic parameters of bionic robots. The present paper uses a newly developed robot modular named Sambot to construct a caterpillar robotic mechanism, and designs a gait of trapezoidal wave locomotion for it. Two open-link models are put forth to simulate the dynamic behavior of such a locomotion. The inverse dynamic differential equations are derived by Kane's method and are then solved numerically by the Runge–Kutta method of the fourth order. Based on the numerical solutions of these differential equations, the applied joint torques required to produce the harmonic trapezoidal wave locomotion are determined finally, providing us important information on the gait control of the caterpillar robotic mechanism. Finally, the theoretical values of the joint torques are applied onto the present caterpillar mechanism to perform a locomotion experiment, which verifies the effectiveness of the present dynamics analysis.</description><subject>Caterpillars</subject><subject>Differential equations</subject><subject>Dynamics</subject><subject>Inverse dynamics</subject><subject>Locomotion</subject><subject>Mathematical models</subject><subject>Robotics</subject><subject>Robots</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UDtPwzAQthBIlMIPYLPEAEvAjuNHRlTxqKjEQFcUOfG5TZXExU5B-fc4agcEYjjd6b6HvjuELim5pYTKuzeSCsZlJmlKCMkUO0ITmok8UUKoYzQZ4WTET9FZCBtCKKOZnKD3efcJPgA2Q6fbusKtM9DU3QrrzsTSzRDqgJ3FGnfwhSvdg9_WTaM99q50_SiBaq27OrS4HPCL7uA6xF2_duYcnVjdBLg49ClaPj4sZ8_J4vVpPrtfJBXjpE_SXFguMlYKqlWaccGN4pKYOEOVc2CpKplVkgltOc2MlhYqrZUBApZKNkU3e9utdx87CH3R1qGCGLIDtwsFZTIVPNqmkXr1i7pxOx_PHFlUKUbzGGSK6J5VeReCB1tsfd1qPxSUFOO_iz__jhp20Oi29LVZwQ_rf1XfhZuBNQ</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Wei, Hong-Xing</creator><creator>Wang, Tian-Miao</creator><creator>Liu, Miao</creator><creator>Xiao, Jiang-Yang</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201305</creationdate><title>Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method</title><author>Wei, Hong-Xing ; Wang, Tian-Miao ; Liu, Miao ; Xiao, Jiang-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-296f5643b61a824565d8570d824ec95e328b3f8736af514da7fecaa8de0ef173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Caterpillars</topic><topic>Differential equations</topic><topic>Dynamics</topic><topic>Inverse dynamics</topic><topic>Locomotion</topic><topic>Mathematical models</topic><topic>Robotics</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Hong-Xing</creatorcontrib><creatorcontrib>Wang, Tian-Miao</creatorcontrib><creatorcontrib>Liu, Miao</creatorcontrib><creatorcontrib>Xiao, Jiang-Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Hong-Xing</au><au>Wang, Tian-Miao</au><au>Liu, Miao</au><au>Xiao, Jiang-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2013-05</date><risdate>2013</risdate><volume>31</volume><issue>3</issue><spage>493</spage><epage>501</epage><pages>493-501</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>Bionic engineering has been a focus in the field of robotic researches. Inverse dynamic analysis is significant for the determination of dynamic parameters of bionic robots. The present paper uses a newly developed robot modular named Sambot to construct a caterpillar robotic mechanism, and designs a gait of trapezoidal wave locomotion for it. Two open-link models are put forth to simulate the dynamic behavior of such a locomotion. The inverse dynamic differential equations are derived by Kane's method and are then solved numerically by the Runge–Kutta method of the fourth order. Based on the numerical solutions of these differential equations, the applied joint torques required to produce the harmonic trapezoidal wave locomotion are determined finally, providing us important information on the gait control of the caterpillar robotic mechanism. Finally, the theoretical values of the joint torques are applied onto the present caterpillar mechanism to perform a locomotion experiment, which verifies the effectiveness of the present dynamics analysis.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574712000483</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-5747 |
ispartof | Robotica, 2013-05, Vol.31 (3), p.493-501 |
issn | 0263-5747 1469-8668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1372655652 |
source | Cambridge University Press Journals Complete |
subjects | Caterpillars Differential equations Dynamics Inverse dynamics Locomotion Mathematical models Robotics Robots |
title | Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20dynamic%20modeling%20and%20analysis%20of%20a%20new%20caterpillar%20robotic%20mechanism%20by%20Kane's%20method&rft.jtitle=Robotica&rft.au=Wei,%20Hong-Xing&rft.date=2013-05&rft.volume=31&rft.issue=3&rft.spage=493&rft.epage=501&rft.pages=493-501&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574712000483&rft_dat=%3Cproquest_cross%3E1372655652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1318831964&rft_id=info:pmid/&rft_cupid=10_1017_S0263574712000483&rfr_iscdi=true |