Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method

Bionic engineering has been a focus in the field of robotic researches. Inverse dynamic analysis is significant for the determination of dynamic parameters of bionic robots. The present paper uses a newly developed robot modular named Sambot to construct a caterpillar robotic mechanism, and designs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotica 2013-05, Vol.31 (3), p.493-501
Hauptverfasser: Wei, Hong-Xing, Wang, Tian-Miao, Liu, Miao, Xiao, Jiang-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 501
container_issue 3
container_start_page 493
container_title Robotica
container_volume 31
creator Wei, Hong-Xing
Wang, Tian-Miao
Liu, Miao
Xiao, Jiang-Yang
description Bionic engineering has been a focus in the field of robotic researches. Inverse dynamic analysis is significant for the determination of dynamic parameters of bionic robots. The present paper uses a newly developed robot modular named Sambot to construct a caterpillar robotic mechanism, and designs a gait of trapezoidal wave locomotion for it. Two open-link models are put forth to simulate the dynamic behavior of such a locomotion. The inverse dynamic differential equations are derived by Kane's method and are then solved numerically by the Runge–Kutta method of the fourth order. Based on the numerical solutions of these differential equations, the applied joint torques required to produce the harmonic trapezoidal wave locomotion are determined finally, providing us important information on the gait control of the caterpillar robotic mechanism. Finally, the theoretical values of the joint torques are applied onto the present caterpillar mechanism to perform a locomotion experiment, which verifies the effectiveness of the present dynamics analysis.
doi_str_mv 10.1017/S0263574712000483
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372655652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574712000483</cupid><sourcerecordid>1372655652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-296f5643b61a824565d8570d824ec95e328b3f8736af514da7fecaa8de0ef173</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMIPYLPEAEvAjuNHRlTxqKjEQFcUOfG5TZXExU5B-fc4agcEYjjd6b6HvjuELim5pYTKuzeSCsZlJmlKCMkUO0ITmok8UUKoYzQZ4WTET9FZCBtCKKOZnKD3efcJPgA2Q6fbusKtM9DU3QrrzsTSzRDqgJ3FGnfwhSvdg9_WTaM99q50_SiBaq27OrS4HPCL7uA6xF2_duYcnVjdBLg49ClaPj4sZ8_J4vVpPrtfJBXjpE_SXFguMlYKqlWaccGN4pKYOEOVc2CpKplVkgltOc2MlhYqrZUBApZKNkU3e9utdx87CH3R1qGCGLIDtwsFZTIVPNqmkXr1i7pxOx_PHFlUKUbzGGSK6J5VeReCB1tsfd1qPxSUFOO_iz__jhp20Oi29LVZwQ_rf1XfhZuBNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318831964</pqid></control><display><type>article</type><title>Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method</title><source>Cambridge University Press Journals Complete</source><creator>Wei, Hong-Xing ; Wang, Tian-Miao ; Liu, Miao ; Xiao, Jiang-Yang</creator><creatorcontrib>Wei, Hong-Xing ; Wang, Tian-Miao ; Liu, Miao ; Xiao, Jiang-Yang</creatorcontrib><description>Bionic engineering has been a focus in the field of robotic researches. Inverse dynamic analysis is significant for the determination of dynamic parameters of bionic robots. The present paper uses a newly developed robot modular named Sambot to construct a caterpillar robotic mechanism, and designs a gait of trapezoidal wave locomotion for it. Two open-link models are put forth to simulate the dynamic behavior of such a locomotion. The inverse dynamic differential equations are derived by Kane's method and are then solved numerically by the Runge–Kutta method of the fourth order. Based on the numerical solutions of these differential equations, the applied joint torques required to produce the harmonic trapezoidal wave locomotion are determined finally, providing us important information on the gait control of the caterpillar robotic mechanism. Finally, the theoretical values of the joint torques are applied onto the present caterpillar mechanism to perform a locomotion experiment, which verifies the effectiveness of the present dynamics analysis.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574712000483</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Caterpillars ; Differential equations ; Dynamics ; Inverse dynamics ; Locomotion ; Mathematical models ; Robotics ; Robots</subject><ispartof>Robotica, 2013-05, Vol.31 (3), p.493-501</ispartof><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-296f5643b61a824565d8570d824ec95e328b3f8736af514da7fecaa8de0ef173</citedby><cites>FETCH-LOGICAL-c350t-296f5643b61a824565d8570d824ec95e328b3f8736af514da7fecaa8de0ef173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574712000483/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Wei, Hong-Xing</creatorcontrib><creatorcontrib>Wang, Tian-Miao</creatorcontrib><creatorcontrib>Liu, Miao</creatorcontrib><creatorcontrib>Xiao, Jiang-Yang</creatorcontrib><title>Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method</title><title>Robotica</title><addtitle>Robotica</addtitle><description>Bionic engineering has been a focus in the field of robotic researches. Inverse dynamic analysis is significant for the determination of dynamic parameters of bionic robots. The present paper uses a newly developed robot modular named Sambot to construct a caterpillar robotic mechanism, and designs a gait of trapezoidal wave locomotion for it. Two open-link models are put forth to simulate the dynamic behavior of such a locomotion. The inverse dynamic differential equations are derived by Kane's method and are then solved numerically by the Runge–Kutta method of the fourth order. Based on the numerical solutions of these differential equations, the applied joint torques required to produce the harmonic trapezoidal wave locomotion are determined finally, providing us important information on the gait control of the caterpillar robotic mechanism. Finally, the theoretical values of the joint torques are applied onto the present caterpillar mechanism to perform a locomotion experiment, which verifies the effectiveness of the present dynamics analysis.</description><subject>Caterpillars</subject><subject>Differential equations</subject><subject>Dynamics</subject><subject>Inverse dynamics</subject><subject>Locomotion</subject><subject>Mathematical models</subject><subject>Robotics</subject><subject>Robots</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UDtPwzAQthBIlMIPYLPEAEvAjuNHRlTxqKjEQFcUOfG5TZXExU5B-fc4agcEYjjd6b6HvjuELim5pYTKuzeSCsZlJmlKCMkUO0ITmok8UUKoYzQZ4WTET9FZCBtCKKOZnKD3efcJPgA2Q6fbusKtM9DU3QrrzsTSzRDqgJ3FGnfwhSvdg9_WTaM99q50_SiBaq27OrS4HPCL7uA6xF2_duYcnVjdBLg49ClaPj4sZ8_J4vVpPrtfJBXjpE_SXFguMlYKqlWaccGN4pKYOEOVc2CpKplVkgltOc2MlhYqrZUBApZKNkU3e9utdx87CH3R1qGCGLIDtwsFZTIVPNqmkXr1i7pxOx_PHFlUKUbzGGSK6J5VeReCB1tsfd1qPxSUFOO_iz__jhp20Oi29LVZwQ_rf1XfhZuBNQ</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Wei, Hong-Xing</creator><creator>Wang, Tian-Miao</creator><creator>Liu, Miao</creator><creator>Xiao, Jiang-Yang</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201305</creationdate><title>Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method</title><author>Wei, Hong-Xing ; Wang, Tian-Miao ; Liu, Miao ; Xiao, Jiang-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-296f5643b61a824565d8570d824ec95e328b3f8736af514da7fecaa8de0ef173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Caterpillars</topic><topic>Differential equations</topic><topic>Dynamics</topic><topic>Inverse dynamics</topic><topic>Locomotion</topic><topic>Mathematical models</topic><topic>Robotics</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Hong-Xing</creatorcontrib><creatorcontrib>Wang, Tian-Miao</creatorcontrib><creatorcontrib>Liu, Miao</creatorcontrib><creatorcontrib>Xiao, Jiang-Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Hong-Xing</au><au>Wang, Tian-Miao</au><au>Liu, Miao</au><au>Xiao, Jiang-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2013-05</date><risdate>2013</risdate><volume>31</volume><issue>3</issue><spage>493</spage><epage>501</epage><pages>493-501</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>Bionic engineering has been a focus in the field of robotic researches. Inverse dynamic analysis is significant for the determination of dynamic parameters of bionic robots. The present paper uses a newly developed robot modular named Sambot to construct a caterpillar robotic mechanism, and designs a gait of trapezoidal wave locomotion for it. Two open-link models are put forth to simulate the dynamic behavior of such a locomotion. The inverse dynamic differential equations are derived by Kane's method and are then solved numerically by the Runge–Kutta method of the fourth order. Based on the numerical solutions of these differential equations, the applied joint torques required to produce the harmonic trapezoidal wave locomotion are determined finally, providing us important information on the gait control of the caterpillar robotic mechanism. Finally, the theoretical values of the joint torques are applied onto the present caterpillar mechanism to perform a locomotion experiment, which verifies the effectiveness of the present dynamics analysis.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574712000483</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-5747
ispartof Robotica, 2013-05, Vol.31 (3), p.493-501
issn 0263-5747
1469-8668
language eng
recordid cdi_proquest_miscellaneous_1372655652
source Cambridge University Press Journals Complete
subjects Caterpillars
Differential equations
Dynamics
Inverse dynamics
Locomotion
Mathematical models
Robotics
Robots
title Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20dynamic%20modeling%20and%20analysis%20of%20a%20new%20caterpillar%20robotic%20mechanism%20by%20Kane's%20method&rft.jtitle=Robotica&rft.au=Wei,%20Hong-Xing&rft.date=2013-05&rft.volume=31&rft.issue=3&rft.spage=493&rft.epage=501&rft.pages=493-501&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574712000483&rft_dat=%3Cproquest_cross%3E1372655652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1318831964&rft_id=info:pmid/&rft_cupid=10_1017_S0263574712000483&rfr_iscdi=true