Robust Speaker Identification using Denoised Wave Atom and GMM
This paper introduces the use of Wave atom transformation as an efficient speech noise filter with Gaussian mixture models (GMM) for robust text-independent speaker identification. The individual Gaussian components of a GMM are shown to represent some general speaker identity. The focus of this wor...
Gespeichert in:
Veröffentlicht in: | International journal of computer applications 2013-01, Vol.67 (5), p.17-23 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 5 |
container_start_page | 17 |
container_title | International journal of computer applications |
container_volume | 67 |
creator | Alhanjouri, Mohammed H Lubbad, Mohammed A Alkurdi, Mahmoud Z |
description | This paper introduces the use of Wave atom transformation as an efficient speech noise filter with Gaussian mixture models (GMM) for robust text-independent speaker identification. The individual Gaussian components of a GMM are shown to represent some general speaker identity. The focus of this work is on applications which require high robustness of noise and high identification rates using short utterance from noisy (Natural Noise) numerical speech and alphabetical words speech. A Full experimental evaluation of the Gaussian mixture speaker model is conducted on a 10 speakers. The experiments examine algorithmic issues (Preprocessing (Denoising by Wave Atom), Feature Extraction (MFCC), Training using GMM, Pattern Matching (Maximum likelihood estimation ML), Decision Rule (Expectation Maximization EM)). The Proposed algorithm attains 95% identification accuracy using 5 seconds noisy speech utterances without Wave atom preprocessing it attains 90% identification accuracy using 5 seconds noisy speech utterances. Proposed denoisy algorithm increases the identification ratio by 5% for noisy speech signals, this ratio is interesting enough. |
doi_str_mv | 10.5120/11391-6687 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372654765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372654765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1737-17795786af71432a496041a2b23fef1b3d39d10352bfdc2f6fcd25483682cd373</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWGo3_oKAGxFGk9w8JhuhVK2FFsEHLofMJJGpnUlNZgT_vVPrQrybcxcfh8OH0Ckll4IyckUpaJpJmasDNCJaiSzPc3X45z9Gk5TWZDjQTGo-QtePoexTh5-2zry7iBfWtV3t68p0dWhxn-r2Dd-4NtTJWfxqPh2edqHBprV4vlqdoCNvNslNfnOMXu5un2f32fJhvphNl1lFFaiMKqWFyqXxinJghmtJODWsZOCdpyVY0JYSEKz0tmJe-soywXOQOassKBij833vNoaP3qWuaOpUuc3GtC70qaCgmBRcSTGgZ__QdehjO6wbKKEISCn5QF3sqSqGlKLzxTbWjYlfBSXFzmbxY7PY2YRvlqJjPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357036664</pqid></control><display><type>article</type><title>Robust Speaker Identification using Denoised Wave Atom and GMM</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alhanjouri, Mohammed ; H Lubbad, Mohammed A ; Alkurdi, Mahmoud Z</creator><creatorcontrib>Alhanjouri, Mohammed ; H Lubbad, Mohammed A ; Alkurdi, Mahmoud Z</creatorcontrib><description>This paper introduces the use of Wave atom transformation as an efficient speech noise filter with Gaussian mixture models (GMM) for robust text-independent speaker identification. The individual Gaussian components of a GMM are shown to represent some general speaker identity. The focus of this work is on applications which require high robustness of noise and high identification rates using short utterance from noisy (Natural Noise) numerical speech and alphabetical words speech. A Full experimental evaluation of the Gaussian mixture speaker model is conducted on a 10 speakers. The experiments examine algorithmic issues (Preprocessing (Denoising by Wave Atom), Feature Extraction (MFCC), Training using GMM, Pattern Matching (Maximum likelihood estimation ML), Decision Rule (Expectation Maximization EM)). The Proposed algorithm attains 95% identification accuracy using 5 seconds noisy speech utterances without Wave atom preprocessing it attains 90% identification accuracy using 5 seconds noisy speech utterances. Proposed denoisy algorithm increases the identification ratio by 5% for noisy speech signals, this ratio is interesting enough.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/11391-6687</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Accuracy ; Algorithms ; Gaussian ; Mathematical models ; Maximization ; Noise ; Preprocessing ; Speech</subject><ispartof>International journal of computer applications, 2013-01, Vol.67 (5), p.17-23</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1737-17795786af71432a496041a2b23fef1b3d39d10352bfdc2f6fcd25483682cd373</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alhanjouri, Mohammed</creatorcontrib><creatorcontrib>H Lubbad, Mohammed A</creatorcontrib><creatorcontrib>Alkurdi, Mahmoud Z</creatorcontrib><title>Robust Speaker Identification using Denoised Wave Atom and GMM</title><title>International journal of computer applications</title><description>This paper introduces the use of Wave atom transformation as an efficient speech noise filter with Gaussian mixture models (GMM) for robust text-independent speaker identification. The individual Gaussian components of a GMM are shown to represent some general speaker identity. The focus of this work is on applications which require high robustness of noise and high identification rates using short utterance from noisy (Natural Noise) numerical speech and alphabetical words speech. A Full experimental evaluation of the Gaussian mixture speaker model is conducted on a 10 speakers. The experiments examine algorithmic issues (Preprocessing (Denoising by Wave Atom), Feature Extraction (MFCC), Training using GMM, Pattern Matching (Maximum likelihood estimation ML), Decision Rule (Expectation Maximization EM)). The Proposed algorithm attains 95% identification accuracy using 5 seconds noisy speech utterances without Wave atom preprocessing it attains 90% identification accuracy using 5 seconds noisy speech utterances. Proposed denoisy algorithm increases the identification ratio by 5% for noisy speech signals, this ratio is interesting enough.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Gaussian</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Noise</subject><subject>Preprocessing</subject><subject>Speech</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMoWGo3_oKAGxFGk9w8JhuhVK2FFsEHLofMJJGpnUlNZgT_vVPrQrybcxcfh8OH0Ckll4IyckUpaJpJmasDNCJaiSzPc3X45z9Gk5TWZDjQTGo-QtePoexTh5-2zry7iBfWtV3t68p0dWhxn-r2Dd-4NtTJWfxqPh2edqHBprV4vlqdoCNvNslNfnOMXu5un2f32fJhvphNl1lFFaiMKqWFyqXxinJghmtJODWsZOCdpyVY0JYSEKz0tmJe-soywXOQOassKBij833vNoaP3qWuaOpUuc3GtC70qaCgmBRcSTGgZ__QdehjO6wbKKEISCn5QF3sqSqGlKLzxTbWjYlfBSXFzmbxY7PY2YRvlqJjPQ</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Alhanjouri, Mohammed</creator><creator>H Lubbad, Mohammed A</creator><creator>Alkurdi, Mahmoud Z</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Robust Speaker Identification using Denoised Wave Atom and GMM</title><author>Alhanjouri, Mohammed ; H Lubbad, Mohammed A ; Alkurdi, Mahmoud Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1737-17795786af71432a496041a2b23fef1b3d39d10352bfdc2f6fcd25483682cd373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Gaussian</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Noise</topic><topic>Preprocessing</topic><topic>Speech</topic><toplevel>online_resources</toplevel><creatorcontrib>Alhanjouri, Mohammed</creatorcontrib><creatorcontrib>H Lubbad, Mohammed A</creatorcontrib><creatorcontrib>Alkurdi, Mahmoud Z</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhanjouri, Mohammed</au><au>H Lubbad, Mohammed A</au><au>Alkurdi, Mahmoud Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Speaker Identification using Denoised Wave Atom and GMM</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>67</volume><issue>5</issue><spage>17</spage><epage>23</epage><pages>17-23</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>This paper introduces the use of Wave atom transformation as an efficient speech noise filter with Gaussian mixture models (GMM) for robust text-independent speaker identification. The individual Gaussian components of a GMM are shown to represent some general speaker identity. The focus of this work is on applications which require high robustness of noise and high identification rates using short utterance from noisy (Natural Noise) numerical speech and alphabetical words speech. A Full experimental evaluation of the Gaussian mixture speaker model is conducted on a 10 speakers. The experiments examine algorithmic issues (Preprocessing (Denoising by Wave Atom), Feature Extraction (MFCC), Training using GMM, Pattern Matching (Maximum likelihood estimation ML), Decision Rule (Expectation Maximization EM)). The Proposed algorithm attains 95% identification accuracy using 5 seconds noisy speech utterances without Wave atom preprocessing it attains 90% identification accuracy using 5 seconds noisy speech utterances. Proposed denoisy algorithm increases the identification ratio by 5% for noisy speech signals, this ratio is interesting enough.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/11391-6687</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2013-01, Vol.67 (5), p.17-23 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1372654765 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Gaussian Mathematical models Maximization Noise Preprocessing Speech |
title | Robust Speaker Identification using Denoised Wave Atom and GMM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Speaker%20Identification%20using%20Denoised%20Wave%20Atom%20and%20GMM&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Alhanjouri,%20Mohammed&rft.date=2013-01-01&rft.volume=67&rft.issue=5&rft.spage=17&rft.epage=23&rft.pages=17-23&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/11391-6687&rft_dat=%3Cproquest_cross%3E1372654765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357036664&rft_id=info:pmid/&rfr_iscdi=true |