Image Completion by Diffusion Maps and Spectral Relaxation
We present a framework for image inpainting that utilizes the diffusion framework approach to spectral dimensionality reduction. We show that on formulating the inpainting problem in the embedding domain, the domain to be inpainted is smoother in general, particularly for the textured images. Thus,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2013-08, Vol.22 (8), p.2983-2994 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2994 |
---|---|
container_issue | 8 |
container_start_page | 2983 |
container_title | IEEE transactions on image processing |
container_volume | 22 |
creator | Gepshtein, S. Keller, Y. |
description | We present a framework for image inpainting that utilizes the diffusion framework approach to spectral dimensionality reduction. We show that on formulating the inpainting problem in the embedding domain, the domain to be inpainted is smoother in general, particularly for the textured images. Thus, the textured images can be inpainted through simple exemplar-based and variational methods. We discuss the properties of the induced smoothness and relate it to the underlying assumptions used in contemporary inpainting schemes. As the diffusion embedding is nonlinear and noninvertible, we propose a novel computational approach to approximate the inverse mapping from the inpainted embedding space to the image domain. We formulate the mapping as a discrete optimization problem, solved through spectral relaxation. The effectiveness of the presented method is exemplified by inpainting real images, where it is shown to compare favorably with contemporary state-of-the-art schemes. |
doi_str_mv | 10.1109/TIP.2013.2237916 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372654403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6409455</ieee_id><sourcerecordid>2984756831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-bb3672000906c8f21dd4ddcbef42d2f54a217b7dd3e7706f364efd9bfa8419c93</originalsourceid><addsrcrecordid>eNqN0UlLAzEUB_Agiq3LXRBkQAQvU1_2xpvUrVBRtJ6HTBaZMpuTDthv7wytFTx5SkJ-78F7f4ROMIwwBnU1n76MCGA6IoRKhcUOGmLFcAzAyG53By5jiZkaoIMQFgCYcSz20YBQSogUZIiup4X-cNGkKurcLbOqjNJVdJt534b-8aTrEOnSRm-1M8tG59Gry_WX7uUR2vM6D-54cx6i9_u7-eQxnj0_TCc3s9gwDMs4TamQBAAUCDP2BFvLrDWp84xY4jnTBMtUWkudlCA8Fcx5q1Kvxwwro-ghulz3rZvqs3VhmRRZMC7PdemqNiSYSiI4Y0D_QblQXAhGOnr-hy6qtim7QXolu4WCEp2CtTJNFULjfFI3WaGbVYIh6SNIugiSPoJkE0FXcrZp3KaFs9uCn5134GIDdDA6940uTRZ-neRKyXE_zOnaZc657bdgoBjn9BssKZSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357223096</pqid></control><display><type>article</type><title>Image Completion by Diffusion Maps and Spectral Relaxation</title><source>IEEE Electronic Library (IEL)</source><creator>Gepshtein, S. ; Keller, Y.</creator><creatorcontrib>Gepshtein, S. ; Keller, Y.</creatorcontrib><description>We present a framework for image inpainting that utilizes the diffusion framework approach to spectral dimensionality reduction. We show that on formulating the inpainting problem in the embedding domain, the domain to be inpainted is smoother in general, particularly for the textured images. Thus, the textured images can be inpainted through simple exemplar-based and variational methods. We discuss the properties of the induced smoothness and relate it to the underlying assumptions used in contemporary inpainting schemes. As the diffusion embedding is nonlinear and noninvertible, we propose a novel computational approach to approximate the inverse mapping from the inpainted embedding space to the image domain. We formulate the mapping as a discrete optimization problem, solved through spectral relaxation. The effectiveness of the presented method is exemplified by inpainting real images, where it is shown to compare favorably with contemporary state-of-the-art schemes.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2237916</identifier><identifier>PMID: 23322762</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Diffusion ; Equations ; Exact sciences and technology ; Heating ; Image Enhancement - methods ; Image inpainting ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information, signal and communications theory ; Interpolation ; Inverse ; Kernel ; Manifolds ; Mapping ; Minimization ; Optimization ; Pattern recognition ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal processing ; Spectra ; Studies ; Telecommunications and information theory ; texture synthesis ; Variational methods</subject><ispartof>IEEE transactions on image processing, 2013-08, Vol.22 (8), p.2983-2994</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-bb3672000906c8f21dd4ddcbef42d2f54a217b7dd3e7706f364efd9bfa8419c93</citedby><cites>FETCH-LOGICAL-c410t-bb3672000906c8f21dd4ddcbef42d2f54a217b7dd3e7706f364efd9bfa8419c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6409455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6409455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27599783$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23322762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gepshtein, S.</creatorcontrib><creatorcontrib>Keller, Y.</creatorcontrib><title>Image Completion by Diffusion Maps and Spectral Relaxation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We present a framework for image inpainting that utilizes the diffusion framework approach to spectral dimensionality reduction. We show that on formulating the inpainting problem in the embedding domain, the domain to be inpainted is smoother in general, particularly for the textured images. Thus, the textured images can be inpainted through simple exemplar-based and variational methods. We discuss the properties of the induced smoothness and relate it to the underlying assumptions used in contemporary inpainting schemes. As the diffusion embedding is nonlinear and noninvertible, we propose a novel computational approach to approximate the inverse mapping from the inpainted embedding space to the image domain. We formulate the mapping as a discrete optimization problem, solved through spectral relaxation. The effectiveness of the presented method is exemplified by inpainting real images, where it is shown to compare favorably with contemporary state-of-the-art schemes.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Diffusion</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Heating</subject><subject>Image Enhancement - methods</subject><subject>Image inpainting</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Interpolation</subject><subject>Inverse</subject><subject>Kernel</subject><subject>Manifolds</subject><subject>Mapping</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal processing</subject><subject>Spectra</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>texture synthesis</subject><subject>Variational methods</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqN0UlLAzEUB_Agiq3LXRBkQAQvU1_2xpvUrVBRtJ6HTBaZMpuTDthv7wytFTx5SkJ-78F7f4ROMIwwBnU1n76MCGA6IoRKhcUOGmLFcAzAyG53By5jiZkaoIMQFgCYcSz20YBQSogUZIiup4X-cNGkKurcLbOqjNJVdJt534b-8aTrEOnSRm-1M8tG59Gry_WX7uUR2vM6D-54cx6i9_u7-eQxnj0_TCc3s9gwDMs4TamQBAAUCDP2BFvLrDWp84xY4jnTBMtUWkudlCA8Fcx5q1Kvxwwro-ghulz3rZvqs3VhmRRZMC7PdemqNiSYSiI4Y0D_QblQXAhGOnr-hy6qtim7QXolu4WCEp2CtTJNFULjfFI3WaGbVYIh6SNIugiSPoJkE0FXcrZp3KaFs9uCn5134GIDdDA6940uTRZ-neRKyXE_zOnaZc657bdgoBjn9BssKZSU</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Gepshtein, S.</creator><creator>Keller, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130801</creationdate><title>Image Completion by Diffusion Maps and Spectral Relaxation</title><author>Gepshtein, S. ; Keller, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-bb3672000906c8f21dd4ddcbef42d2f54a217b7dd3e7706f364efd9bfa8419c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Diffusion</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Heating</topic><topic>Image Enhancement - methods</topic><topic>Image inpainting</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Interpolation</topic><topic>Inverse</topic><topic>Kernel</topic><topic>Manifolds</topic><topic>Mapping</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal processing</topic><topic>Spectra</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>texture synthesis</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gepshtein, S.</creatorcontrib><creatorcontrib>Keller, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gepshtein, S.</au><au>Keller, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Completion by Diffusion Maps and Spectral Relaxation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>22</volume><issue>8</issue><spage>2983</spage><epage>2994</epage><pages>2983-2994</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We present a framework for image inpainting that utilizes the diffusion framework approach to spectral dimensionality reduction. We show that on formulating the inpainting problem in the embedding domain, the domain to be inpainted is smoother in general, particularly for the textured images. Thus, the textured images can be inpainted through simple exemplar-based and variational methods. We discuss the properties of the induced smoothness and relate it to the underlying assumptions used in contemporary inpainting schemes. As the diffusion embedding is nonlinear and noninvertible, we propose a novel computational approach to approximate the inverse mapping from the inpainted embedding space to the image domain. We formulate the mapping as a discrete optimization problem, solved through spectral relaxation. The effectiveness of the presented method is exemplified by inpainting real images, where it is shown to compare favorably with contemporary state-of-the-art schemes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23322762</pmid><doi>10.1109/TIP.2013.2237916</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2013-08, Vol.22 (8), p.2983-2994 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_1372654403 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Approximation Diffusion Equations Exact sciences and technology Heating Image Enhancement - methods Image inpainting Image Interpretation, Computer-Assisted - methods Image processing Information, signal and communications theory Interpolation Inverse Kernel Manifolds Mapping Minimization Optimization Pattern recognition Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Signal processing Spectra Studies Telecommunications and information theory texture synthesis Variational methods |
title | Image Completion by Diffusion Maps and Spectral Relaxation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Completion%20by%20Diffusion%20Maps%20and%20Spectral%20Relaxation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Gepshtein,%20S.&rft.date=2013-08-01&rft.volume=22&rft.issue=8&rft.spage=2983&rft.epage=2994&rft.pages=2983-2994&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2237916&rft_dat=%3Cproquest_RIE%3E2984756831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357223096&rft_id=info:pmid/23322762&rft_ieee_id=6409455&rfr_iscdi=true |