Image Completion by Diffusion Maps and Spectral Relaxation

We present a framework for image inpainting that utilizes the diffusion framework approach to spectral dimensionality reduction. We show that on formulating the inpainting problem in the embedding domain, the domain to be inpainted is smoother in general, particularly for the textured images. Thus,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2013-08, Vol.22 (8), p.2983-2994
Hauptverfasser: Gepshtein, S., Keller, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2994
container_issue 8
container_start_page 2983
container_title IEEE transactions on image processing
container_volume 22
creator Gepshtein, S.
Keller, Y.
description We present a framework for image inpainting that utilizes the diffusion framework approach to spectral dimensionality reduction. We show that on formulating the inpainting problem in the embedding domain, the domain to be inpainted is smoother in general, particularly for the textured images. Thus, the textured images can be inpainted through simple exemplar-based and variational methods. We discuss the properties of the induced smoothness and relate it to the underlying assumptions used in contemporary inpainting schemes. As the diffusion embedding is nonlinear and noninvertible, we propose a novel computational approach to approximate the inverse mapping from the inpainted embedding space to the image domain. We formulate the mapping as a discrete optimization problem, solved through spectral relaxation. The effectiveness of the presented method is exemplified by inpainting real images, where it is shown to compare favorably with contemporary state-of-the-art schemes.
doi_str_mv 10.1109/TIP.2013.2237916
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372654403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6409455</ieee_id><sourcerecordid>2984756831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-bb3672000906c8f21dd4ddcbef42d2f54a217b7dd3e7706f364efd9bfa8419c93</originalsourceid><addsrcrecordid>eNqN0UlLAzEUB_Agiq3LXRBkQAQvU1_2xpvUrVBRtJ6HTBaZMpuTDthv7wytFTx5SkJ-78F7f4ROMIwwBnU1n76MCGA6IoRKhcUOGmLFcAzAyG53By5jiZkaoIMQFgCYcSz20YBQSogUZIiup4X-cNGkKurcLbOqjNJVdJt534b-8aTrEOnSRm-1M8tG59Gry_WX7uUR2vM6D-54cx6i9_u7-eQxnj0_TCc3s9gwDMs4TamQBAAUCDP2BFvLrDWp84xY4jnTBMtUWkudlCA8Fcx5q1Kvxwwro-ghulz3rZvqs3VhmRRZMC7PdemqNiSYSiI4Y0D_QblQXAhGOnr-hy6qtim7QXolu4WCEp2CtTJNFULjfFI3WaGbVYIh6SNIugiSPoJkE0FXcrZp3KaFs9uCn5134GIDdDA6940uTRZ-neRKyXE_zOnaZc657bdgoBjn9BssKZSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357223096</pqid></control><display><type>article</type><title>Image Completion by Diffusion Maps and Spectral Relaxation</title><source>IEEE Electronic Library (IEL)</source><creator>Gepshtein, S. ; Keller, Y.</creator><creatorcontrib>Gepshtein, S. ; Keller, Y.</creatorcontrib><description>We present a framework for image inpainting that utilizes the diffusion framework approach to spectral dimensionality reduction. We show that on formulating the inpainting problem in the embedding domain, the domain to be inpainted is smoother in general, particularly for the textured images. Thus, the textured images can be inpainted through simple exemplar-based and variational methods. We discuss the properties of the induced smoothness and relate it to the underlying assumptions used in contemporary inpainting schemes. As the diffusion embedding is nonlinear and noninvertible, we propose a novel computational approach to approximate the inverse mapping from the inpainted embedding space to the image domain. We formulate the mapping as a discrete optimization problem, solved through spectral relaxation. The effectiveness of the presented method is exemplified by inpainting real images, where it is shown to compare favorably with contemporary state-of-the-art schemes.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2237916</identifier><identifier>PMID: 23322762</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Diffusion ; Equations ; Exact sciences and technology ; Heating ; Image Enhancement - methods ; Image inpainting ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information, signal and communications theory ; Interpolation ; Inverse ; Kernel ; Manifolds ; Mapping ; Minimization ; Optimization ; Pattern recognition ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal processing ; Spectra ; Studies ; Telecommunications and information theory ; texture synthesis ; Variational methods</subject><ispartof>IEEE transactions on image processing, 2013-08, Vol.22 (8), p.2983-2994</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-bb3672000906c8f21dd4ddcbef42d2f54a217b7dd3e7706f364efd9bfa8419c93</citedby><cites>FETCH-LOGICAL-c410t-bb3672000906c8f21dd4ddcbef42d2f54a217b7dd3e7706f364efd9bfa8419c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6409455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6409455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27599783$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23322762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gepshtein, S.</creatorcontrib><creatorcontrib>Keller, Y.</creatorcontrib><title>Image Completion by Diffusion Maps and Spectral Relaxation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We present a framework for image inpainting that utilizes the diffusion framework approach to spectral dimensionality reduction. We show that on formulating the inpainting problem in the embedding domain, the domain to be inpainted is smoother in general, particularly for the textured images. Thus, the textured images can be inpainted through simple exemplar-based and variational methods. We discuss the properties of the induced smoothness and relate it to the underlying assumptions used in contemporary inpainting schemes. As the diffusion embedding is nonlinear and noninvertible, we propose a novel computational approach to approximate the inverse mapping from the inpainted embedding space to the image domain. We formulate the mapping as a discrete optimization problem, solved through spectral relaxation. The effectiveness of the presented method is exemplified by inpainting real images, where it is shown to compare favorably with contemporary state-of-the-art schemes.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Diffusion</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Heating</subject><subject>Image Enhancement - methods</subject><subject>Image inpainting</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Interpolation</subject><subject>Inverse</subject><subject>Kernel</subject><subject>Manifolds</subject><subject>Mapping</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal processing</subject><subject>Spectra</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>texture synthesis</subject><subject>Variational methods</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqN0UlLAzEUB_Agiq3LXRBkQAQvU1_2xpvUrVBRtJ6HTBaZMpuTDthv7wytFTx5SkJ-78F7f4ROMIwwBnU1n76MCGA6IoRKhcUOGmLFcAzAyG53By5jiZkaoIMQFgCYcSz20YBQSogUZIiup4X-cNGkKurcLbOqjNJVdJt534b-8aTrEOnSRm-1M8tG59Gry_WX7uUR2vM6D-54cx6i9_u7-eQxnj0_TCc3s9gwDMs4TamQBAAUCDP2BFvLrDWp84xY4jnTBMtUWkudlCA8Fcx5q1Kvxwwro-ghulz3rZvqs3VhmRRZMC7PdemqNiSYSiI4Y0D_QblQXAhGOnr-hy6qtim7QXolu4WCEp2CtTJNFULjfFI3WaGbVYIh6SNIugiSPoJkE0FXcrZp3KaFs9uCn5134GIDdDA6940uTRZ-neRKyXE_zOnaZc657bdgoBjn9BssKZSU</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Gepshtein, S.</creator><creator>Keller, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130801</creationdate><title>Image Completion by Diffusion Maps and Spectral Relaxation</title><author>Gepshtein, S. ; Keller, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-bb3672000906c8f21dd4ddcbef42d2f54a217b7dd3e7706f364efd9bfa8419c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Diffusion</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Heating</topic><topic>Image Enhancement - methods</topic><topic>Image inpainting</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Interpolation</topic><topic>Inverse</topic><topic>Kernel</topic><topic>Manifolds</topic><topic>Mapping</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal processing</topic><topic>Spectra</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>texture synthesis</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gepshtein, S.</creatorcontrib><creatorcontrib>Keller, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gepshtein, S.</au><au>Keller, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Completion by Diffusion Maps and Spectral Relaxation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>22</volume><issue>8</issue><spage>2983</spage><epage>2994</epage><pages>2983-2994</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We present a framework for image inpainting that utilizes the diffusion framework approach to spectral dimensionality reduction. We show that on formulating the inpainting problem in the embedding domain, the domain to be inpainted is smoother in general, particularly for the textured images. Thus, the textured images can be inpainted through simple exemplar-based and variational methods. We discuss the properties of the induced smoothness and relate it to the underlying assumptions used in contemporary inpainting schemes. As the diffusion embedding is nonlinear and noninvertible, we propose a novel computational approach to approximate the inverse mapping from the inpainted embedding space to the image domain. We formulate the mapping as a discrete optimization problem, solved through spectral relaxation. The effectiveness of the presented method is exemplified by inpainting real images, where it is shown to compare favorably with contemporary state-of-the-art schemes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23322762</pmid><doi>10.1109/TIP.2013.2237916</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2013-08, Vol.22 (8), p.2983-2994
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1372654403
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Approximation
Diffusion
Equations
Exact sciences and technology
Heating
Image Enhancement - methods
Image inpainting
Image Interpretation, Computer-Assisted - methods
Image processing
Information, signal and communications theory
Interpolation
Inverse
Kernel
Manifolds
Mapping
Minimization
Optimization
Pattern recognition
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Signal processing
Spectra
Studies
Telecommunications and information theory
texture synthesis
Variational methods
title Image Completion by Diffusion Maps and Spectral Relaxation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Completion%20by%20Diffusion%20Maps%20and%20Spectral%20Relaxation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Gepshtein,%20S.&rft.date=2013-08-01&rft.volume=22&rft.issue=8&rft.spage=2983&rft.epage=2994&rft.pages=2983-2994&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2237916&rft_dat=%3Cproquest_RIE%3E2984756831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357223096&rft_id=info:pmid/23322762&rft_ieee_id=6409455&rfr_iscdi=true