Sharp RIP bound for sparse signal and low-rank matrix recovery

This paper establishes a sharp condition on the restricted isometry property (RIP) for both the sparse signal recovery and low-rank matrix recovery. It is shown that if the measurement matrix A satisfies the RIP condition δkA

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and computational harmonic analysis 2013-07, Vol.35 (1), p.74-93
Hauptverfasser: Cai, T. Tony, Zhang, Anru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 1
container_start_page 74
container_title Applied and computational harmonic analysis
container_volume 35
creator Cai, T. Tony
Zhang, Anru
description This paper establishes a sharp condition on the restricted isometry property (RIP) for both the sparse signal recovery and low-rank matrix recovery. It is shown that if the measurement matrix A satisfies the RIP condition δkA
doi_str_mv 10.1016/j.acha.2012.07.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372645376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1063520312001273</els_id><sourcerecordid>1372645376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-825c5305dd58c6bdc314e45d64e16d77f04e86d0fc9473b9075f4364f3cb8e473</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVdZumm9aV4tiCCDj4EBxQe4C2mSOh07TU06o_PvbRnXru7hcM6F8yF0TiAlQMTlKtVmqdMMSJaCTIHAAZoQKEQigL4fjlrQhGdAj9FJjCsAQhgvJuj6ZalDh5_nT7j0m9biygccOx2iw7H-aHWD9eA2_jsJuv3Ea92H-gcHZ_zWhd0pOqp0E93Z352it7vb19lDsni8n89uFolhjPZJnnHDKXBreW5EaQ0lzDFuBXNEWCkrYC4XFipTMEnLAiSvGBWsoqbM3WBN0cX-bxf818bFXq3raFzT6Nb5TVSEykwwTqUYotk-aoKPMbhKdaFe67BTBNQIS63UCEuNsBRINcAaSlf7khtGbGsXVDS1a42z9TC1V9bX_9V_AbEYcVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372645376</pqid></control><display><type>article</type><title>Sharp RIP bound for sparse signal and low-rank matrix recovery</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cai, T. Tony ; Zhang, Anru</creator><creatorcontrib>Cai, T. Tony ; Zhang, Anru</creatorcontrib><description>This paper establishes a sharp condition on the restricted isometry property (RIP) for both the sparse signal recovery and low-rank matrix recovery. It is shown that if the measurement matrix A satisfies the RIP condition δkA&lt;1/3, then all k-sparse signals β can be recovered exactly via the constrained ℓ1 minimization based on y=Aβ. Similarly, if the linear map M satisfies the RIP condition δrM&lt;1/3, then all matrices X of rank at most r can be recovered exactly via the constrained nuclear norm minimization based on b=M(X). Furthermore, in both cases it is not possible to do so in general when the condition does not hold. In addition, noisy cases are considered and oracle inequalities are given under the sharp RIP condition.</description><identifier>ISSN: 1063-5203</identifier><identifier>EISSN: 1096-603X</identifier><identifier>DOI: 10.1016/j.acha.2012.07.010</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>[formula omitted] minimization ; Beta ; Compressed sensing ; Constraints ; Dantzig selector ; Economic conditions ; Fourier analysis ; Low-rank matrix recovery ; Minimization ; Norms ; Nuclear norm minimization ; Optimization ; Recovery ; Restricted isometry ; Sparse signal recovery</subject><ispartof>Applied and computational harmonic analysis, 2013-07, Vol.35 (1), p.74-93</ispartof><rights>2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-825c5305dd58c6bdc314e45d64e16d77f04e86d0fc9473b9075f4364f3cb8e473</citedby><cites>FETCH-LOGICAL-c443t-825c5305dd58c6bdc314e45d64e16d77f04e86d0fc9473b9075f4364f3cb8e473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1063520312001273$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cai, T. Tony</creatorcontrib><creatorcontrib>Zhang, Anru</creatorcontrib><title>Sharp RIP bound for sparse signal and low-rank matrix recovery</title><title>Applied and computational harmonic analysis</title><description>This paper establishes a sharp condition on the restricted isometry property (RIP) for both the sparse signal recovery and low-rank matrix recovery. It is shown that if the measurement matrix A satisfies the RIP condition δkA&lt;1/3, then all k-sparse signals β can be recovered exactly via the constrained ℓ1 minimization based on y=Aβ. Similarly, if the linear map M satisfies the RIP condition δrM&lt;1/3, then all matrices X of rank at most r can be recovered exactly via the constrained nuclear norm minimization based on b=M(X). Furthermore, in both cases it is not possible to do so in general when the condition does not hold. In addition, noisy cases are considered and oracle inequalities are given under the sharp RIP condition.</description><subject>[formula omitted] minimization</subject><subject>Beta</subject><subject>Compressed sensing</subject><subject>Constraints</subject><subject>Dantzig selector</subject><subject>Economic conditions</subject><subject>Fourier analysis</subject><subject>Low-rank matrix recovery</subject><subject>Minimization</subject><subject>Norms</subject><subject>Nuclear norm minimization</subject><subject>Optimization</subject><subject>Recovery</subject><subject>Restricted isometry</subject><subject>Sparse signal recovery</subject><issn>1063-5203</issn><issn>1096-603X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVdZumm9aV4tiCCDj4EBxQe4C2mSOh07TU06o_PvbRnXru7hcM6F8yF0TiAlQMTlKtVmqdMMSJaCTIHAAZoQKEQigL4fjlrQhGdAj9FJjCsAQhgvJuj6ZalDh5_nT7j0m9biygccOx2iw7H-aHWD9eA2_jsJuv3Ea92H-gcHZ_zWhd0pOqp0E93Z352it7vb19lDsni8n89uFolhjPZJnnHDKXBreW5EaQ0lzDFuBXNEWCkrYC4XFipTMEnLAiSvGBWsoqbM3WBN0cX-bxf818bFXq3raFzT6Nb5TVSEykwwTqUYotk-aoKPMbhKdaFe67BTBNQIS63UCEuNsBRINcAaSlf7khtGbGsXVDS1a42z9TC1V9bX_9V_AbEYcVg</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Cai, T. Tony</creator><creator>Zhang, Anru</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201307</creationdate><title>Sharp RIP bound for sparse signal and low-rank matrix recovery</title><author>Cai, T. Tony ; Zhang, Anru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-825c5305dd58c6bdc314e45d64e16d77f04e86d0fc9473b9075f4364f3cb8e473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>[formula omitted] minimization</topic><topic>Beta</topic><topic>Compressed sensing</topic><topic>Constraints</topic><topic>Dantzig selector</topic><topic>Economic conditions</topic><topic>Fourier analysis</topic><topic>Low-rank matrix recovery</topic><topic>Minimization</topic><topic>Norms</topic><topic>Nuclear norm minimization</topic><topic>Optimization</topic><topic>Recovery</topic><topic>Restricted isometry</topic><topic>Sparse signal recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, T. Tony</creatorcontrib><creatorcontrib>Zhang, Anru</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied and computational harmonic analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, T. Tony</au><au>Zhang, Anru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp RIP bound for sparse signal and low-rank matrix recovery</atitle><jtitle>Applied and computational harmonic analysis</jtitle><date>2013-07</date><risdate>2013</risdate><volume>35</volume><issue>1</issue><spage>74</spage><epage>93</epage><pages>74-93</pages><issn>1063-5203</issn><eissn>1096-603X</eissn><abstract>This paper establishes a sharp condition on the restricted isometry property (RIP) for both the sparse signal recovery and low-rank matrix recovery. It is shown that if the measurement matrix A satisfies the RIP condition δkA&lt;1/3, then all k-sparse signals β can be recovered exactly via the constrained ℓ1 minimization based on y=Aβ. Similarly, if the linear map M satisfies the RIP condition δrM&lt;1/3, then all matrices X of rank at most r can be recovered exactly via the constrained nuclear norm minimization based on b=M(X). Furthermore, in both cases it is not possible to do so in general when the condition does not hold. In addition, noisy cases are considered and oracle inequalities are given under the sharp RIP condition.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.acha.2012.07.010</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-5203
ispartof Applied and computational harmonic analysis, 2013-07, Vol.35 (1), p.74-93
issn 1063-5203
1096-603X
language eng
recordid cdi_proquest_miscellaneous_1372645376
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects [formula omitted] minimization
Beta
Compressed sensing
Constraints
Dantzig selector
Economic conditions
Fourier analysis
Low-rank matrix recovery
Minimization
Norms
Nuclear norm minimization
Optimization
Recovery
Restricted isometry
Sparse signal recovery
title Sharp RIP bound for sparse signal and low-rank matrix recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20RIP%20bound%20for%20sparse%20signal%20and%20low-rank%20matrix%20recovery&rft.jtitle=Applied%20and%20computational%20harmonic%20analysis&rft.au=Cai,%20T.%20Tony&rft.date=2013-07&rft.volume=35&rft.issue=1&rft.spage=74&rft.epage=93&rft.pages=74-93&rft.issn=1063-5203&rft.eissn=1096-603X&rft_id=info:doi/10.1016/j.acha.2012.07.010&rft_dat=%3Cproquest_cross%3E1372645376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372645376&rft_id=info:pmid/&rft_els_id=S1063520312001273&rfr_iscdi=true