Maneuvering target tracking by adaptive statistics model

A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive accel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of China universities of posts and telecommunications 2013-02, Vol.20 (1), p.108-114
Hauptverfasser: JIN, Xue-bo, DU, Jing-jing, BAO, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 1
container_start_page 108
container_title Journal of China universities of posts and telecommunications
container_volume 20
creator JIN, Xue-bo
DU, Jing-jing
BAO, Jia
description A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter.
doi_str_mv 10.1016/S1005-8885(13)60016-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372638386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45922056</cqvip_id><els_id>S1005888513600163</els_id><sourcerecordid>1372638386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-7e2d1836eb87f7728ec4f6ba2704979ab7c053e1fd06815b0ac81d3c07ecbed23</originalsourceid><addsrcrecordid>eNqFkDlPAzEQhV2ARAj8BKSlC8WCj_WRCqGISwqiAGrLa88Gw2Y3sZ1I-fc4h9JSjeZp3ryZD6Ergm8JJuLug2DMS6UUHxF2I3DWSnaCBkf5DJ3H-INxRSkWA6TeTAerNQTfzYpkwgxSkYKxv9u-3hTGmUXyayhiMsnH5G0s5r2D9gKdNqaNcHmoQ_T19Pg5eSmn78-vk4dpaaliqZRAHVFMQK1kIyVVYKtG1IZKXI3l2NTSYs6ANA4LRXiNjVXEMYsl2BocZUM02u9dhH65gpj03EcLbZvv7ldREyapYIopkUf5ftSGPsYAjV4EPzdhownWWzp6R0dvMWSf3tHRLPvu9z7If6w9BB2th86C8wFs0q73_264PiR_991smdkdoys-zqS5YH-Qenlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372638386</pqid></control><display><type>article</type><title>Maneuvering target tracking by adaptive statistics model</title><source>Alma/SFX Local Collection</source><creator>JIN, Xue-bo ; DU, Jing-jing ; BAO, Jia</creator><creatorcontrib>JIN, Xue-bo ; DU, Jing-jing ; BAO, Jia</creatorcontrib><description>A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter.</description><identifier>ISSN: 1005-8885</identifier><identifier>DOI: 10.1016/S1005-8885(13)60016-3</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Acceleration ; Autocorrelation functions ; China ; maneuvering target ; Maneuvering targets ; Mathematical models ; On-line systems ; state estimation ; Statistics ; statistics relation ; target model ; Tracking ; 估计性能 ; 加速模型 ; 机动目标跟踪 ; 电流模型 ; 统计模型 ; 自适应模型 ; 跟踪机动目标 ; 马尔可夫模型</subject><ispartof>Journal of China universities of posts and telecommunications, 2013-02, Vol.20 (1), p.108-114</ispartof><rights>2013 The Journal of China Universities of Posts and Telecommunications</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-7e2d1836eb87f7728ec4f6ba2704979ab7c053e1fd06815b0ac81d3c07ecbed23</citedby><cites>FETCH-LOGICAL-c283t-7e2d1836eb87f7728ec4f6ba2704979ab7c053e1fd06815b0ac81d3c07ecbed23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84121X/84121X.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>JIN, Xue-bo</creatorcontrib><creatorcontrib>DU, Jing-jing</creatorcontrib><creatorcontrib>BAO, Jia</creatorcontrib><title>Maneuvering target tracking by adaptive statistics model</title><title>Journal of China universities of posts and telecommunications</title><addtitle>The Journal of China Universities of Posts and Telecommunications</addtitle><description>A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter.</description><subject>Acceleration</subject><subject>Autocorrelation functions</subject><subject>China</subject><subject>maneuvering target</subject><subject>Maneuvering targets</subject><subject>Mathematical models</subject><subject>On-line systems</subject><subject>state estimation</subject><subject>Statistics</subject><subject>statistics relation</subject><subject>target model</subject><subject>Tracking</subject><subject>估计性能</subject><subject>加速模型</subject><subject>机动目标跟踪</subject><subject>电流模型</subject><subject>统计模型</subject><subject>自适应模型</subject><subject>跟踪机动目标</subject><subject>马尔可夫模型</subject><issn>1005-8885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkDlPAzEQhV2ARAj8BKSlC8WCj_WRCqGISwqiAGrLa88Gw2Y3sZ1I-fc4h9JSjeZp3ryZD6Ergm8JJuLug2DMS6UUHxF2I3DWSnaCBkf5DJ3H-INxRSkWA6TeTAerNQTfzYpkwgxSkYKxv9u-3hTGmUXyayhiMsnH5G0s5r2D9gKdNqaNcHmoQ_T19Pg5eSmn78-vk4dpaaliqZRAHVFMQK1kIyVVYKtG1IZKXI3l2NTSYs6ANA4LRXiNjVXEMYsl2BocZUM02u9dhH65gpj03EcLbZvv7ldREyapYIopkUf5ftSGPsYAjV4EPzdhownWWzp6R0dvMWSf3tHRLPvu9z7If6w9BB2th86C8wFs0q73_264PiR_991smdkdoys-zqS5YH-Qenlw</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>JIN, Xue-bo</creator><creator>DU, Jing-jing</creator><creator>BAO, Jia</creator><general>Elsevier Ltd</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201302</creationdate><title>Maneuvering target tracking by adaptive statistics model</title><author>JIN, Xue-bo ; DU, Jing-jing ; BAO, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-7e2d1836eb87f7728ec4f6ba2704979ab7c053e1fd06815b0ac81d3c07ecbed23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Autocorrelation functions</topic><topic>China</topic><topic>maneuvering target</topic><topic>Maneuvering targets</topic><topic>Mathematical models</topic><topic>On-line systems</topic><topic>state estimation</topic><topic>Statistics</topic><topic>statistics relation</topic><topic>target model</topic><topic>Tracking</topic><topic>估计性能</topic><topic>加速模型</topic><topic>机动目标跟踪</topic><topic>电流模型</topic><topic>统计模型</topic><topic>自适应模型</topic><topic>跟踪机动目标</topic><topic>马尔可夫模型</topic><toplevel>online_resources</toplevel><creatorcontrib>JIN, Xue-bo</creatorcontrib><creatorcontrib>DU, Jing-jing</creatorcontrib><creatorcontrib>BAO, Jia</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of China universities of posts and telecommunications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JIN, Xue-bo</au><au>DU, Jing-jing</au><au>BAO, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maneuvering target tracking by adaptive statistics model</atitle><jtitle>Journal of China universities of posts and telecommunications</jtitle><addtitle>The Journal of China Universities of Posts and Telecommunications</addtitle><date>2013-02</date><risdate>2013</risdate><volume>20</volume><issue>1</issue><spage>108</spage><epage>114</epage><pages>108-114</pages><issn>1005-8885</issn><abstract>A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1005-8885(13)60016-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1005-8885
ispartof Journal of China universities of posts and telecommunications, 2013-02, Vol.20 (1), p.108-114
issn 1005-8885
language eng
recordid cdi_proquest_miscellaneous_1372638386
source Alma/SFX Local Collection
subjects Acceleration
Autocorrelation functions
China
maneuvering target
Maneuvering targets
Mathematical models
On-line systems
state estimation
Statistics
statistics relation
target model
Tracking
估计性能
加速模型
机动目标跟踪
电流模型
统计模型
自适应模型
跟踪机动目标
马尔可夫模型
title Maneuvering target tracking by adaptive statistics model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maneuvering%20target%20tracking%20by%20adaptive%20statistics%20model&rft.jtitle=Journal%20of%20China%20universities%20of%20posts%20and%20telecommunications&rft.au=JIN,%20Xue-bo&rft.date=2013-02&rft.volume=20&rft.issue=1&rft.spage=108&rft.epage=114&rft.pages=108-114&rft.issn=1005-8885&rft_id=info:doi/10.1016/S1005-8885(13)60016-3&rft_dat=%3Cproquest_cross%3E1372638386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372638386&rft_id=info:pmid/&rft_cqvip_id=45922056&rft_els_id=S1005888513600163&rfr_iscdi=true