Maneuvering target tracking by adaptive statistics model
A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive accel...
Gespeichert in:
Veröffentlicht in: | Journal of China universities of posts and telecommunications 2013-02, Vol.20 (1), p.108-114 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 1 |
container_start_page | 108 |
container_title | Journal of China universities of posts and telecommunications |
container_volume | 20 |
creator | JIN, Xue-bo DU, Jing-jing BAO, Jia |
description | A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter. |
doi_str_mv | 10.1016/S1005-8885(13)60016-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372638386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45922056</cqvip_id><els_id>S1005888513600163</els_id><sourcerecordid>1372638386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-7e2d1836eb87f7728ec4f6ba2704979ab7c053e1fd06815b0ac81d3c07ecbed23</originalsourceid><addsrcrecordid>eNqFkDlPAzEQhV2ARAj8BKSlC8WCj_WRCqGISwqiAGrLa88Gw2Y3sZ1I-fc4h9JSjeZp3ryZD6Ergm8JJuLug2DMS6UUHxF2I3DWSnaCBkf5DJ3H-INxRSkWA6TeTAerNQTfzYpkwgxSkYKxv9u-3hTGmUXyayhiMsnH5G0s5r2D9gKdNqaNcHmoQ_T19Pg5eSmn78-vk4dpaaliqZRAHVFMQK1kIyVVYKtG1IZKXI3l2NTSYs6ANA4LRXiNjVXEMYsl2BocZUM02u9dhH65gpj03EcLbZvv7ldREyapYIopkUf5ftSGPsYAjV4EPzdhownWWzp6R0dvMWSf3tHRLPvu9z7If6w9BB2th86C8wFs0q73_264PiR_991smdkdoys-zqS5YH-Qenlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372638386</pqid></control><display><type>article</type><title>Maneuvering target tracking by adaptive statistics model</title><source>Alma/SFX Local Collection</source><creator>JIN, Xue-bo ; DU, Jing-jing ; BAO, Jia</creator><creatorcontrib>JIN, Xue-bo ; DU, Jing-jing ; BAO, Jia</creatorcontrib><description>A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter.</description><identifier>ISSN: 1005-8885</identifier><identifier>DOI: 10.1016/S1005-8885(13)60016-3</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Acceleration ; Autocorrelation functions ; China ; maneuvering target ; Maneuvering targets ; Mathematical models ; On-line systems ; state estimation ; Statistics ; statistics relation ; target model ; Tracking ; 估计性能 ; 加速模型 ; 机动目标跟踪 ; 电流模型 ; 统计模型 ; 自适应模型 ; 跟踪机动目标 ; 马尔可夫模型</subject><ispartof>Journal of China universities of posts and telecommunications, 2013-02, Vol.20 (1), p.108-114</ispartof><rights>2013 The Journal of China Universities of Posts and Telecommunications</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-7e2d1836eb87f7728ec4f6ba2704979ab7c053e1fd06815b0ac81d3c07ecbed23</citedby><cites>FETCH-LOGICAL-c283t-7e2d1836eb87f7728ec4f6ba2704979ab7c053e1fd06815b0ac81d3c07ecbed23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84121X/84121X.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>JIN, Xue-bo</creatorcontrib><creatorcontrib>DU, Jing-jing</creatorcontrib><creatorcontrib>BAO, Jia</creatorcontrib><title>Maneuvering target tracking by adaptive statistics model</title><title>Journal of China universities of posts and telecommunications</title><addtitle>The Journal of China Universities of Posts and Telecommunications</addtitle><description>A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter.</description><subject>Acceleration</subject><subject>Autocorrelation functions</subject><subject>China</subject><subject>maneuvering target</subject><subject>Maneuvering targets</subject><subject>Mathematical models</subject><subject>On-line systems</subject><subject>state estimation</subject><subject>Statistics</subject><subject>statistics relation</subject><subject>target model</subject><subject>Tracking</subject><subject>估计性能</subject><subject>加速模型</subject><subject>机动目标跟踪</subject><subject>电流模型</subject><subject>统计模型</subject><subject>自适应模型</subject><subject>跟踪机动目标</subject><subject>马尔可夫模型</subject><issn>1005-8885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkDlPAzEQhV2ARAj8BKSlC8WCj_WRCqGISwqiAGrLa88Gw2Y3sZ1I-fc4h9JSjeZp3ryZD6Ergm8JJuLug2DMS6UUHxF2I3DWSnaCBkf5DJ3H-INxRSkWA6TeTAerNQTfzYpkwgxSkYKxv9u-3hTGmUXyayhiMsnH5G0s5r2D9gKdNqaNcHmoQ_T19Pg5eSmn78-vk4dpaaliqZRAHVFMQK1kIyVVYKtG1IZKXI3l2NTSYs6ANA4LRXiNjVXEMYsl2BocZUM02u9dhH65gpj03EcLbZvv7ldREyapYIopkUf5ftSGPsYAjV4EPzdhownWWzp6R0dvMWSf3tHRLPvu9z7If6w9BB2th86C8wFs0q73_264PiR_991smdkdoys-zqS5YH-Qenlw</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>JIN, Xue-bo</creator><creator>DU, Jing-jing</creator><creator>BAO, Jia</creator><general>Elsevier Ltd</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201302</creationdate><title>Maneuvering target tracking by adaptive statistics model</title><author>JIN, Xue-bo ; DU, Jing-jing ; BAO, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-7e2d1836eb87f7728ec4f6ba2704979ab7c053e1fd06815b0ac81d3c07ecbed23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Autocorrelation functions</topic><topic>China</topic><topic>maneuvering target</topic><topic>Maneuvering targets</topic><topic>Mathematical models</topic><topic>On-line systems</topic><topic>state estimation</topic><topic>Statistics</topic><topic>statistics relation</topic><topic>target model</topic><topic>Tracking</topic><topic>估计性能</topic><topic>加速模型</topic><topic>机动目标跟踪</topic><topic>电流模型</topic><topic>统计模型</topic><topic>自适应模型</topic><topic>跟踪机动目标</topic><topic>马尔可夫模型</topic><toplevel>online_resources</toplevel><creatorcontrib>JIN, Xue-bo</creatorcontrib><creatorcontrib>DU, Jing-jing</creatorcontrib><creatorcontrib>BAO, Jia</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of China universities of posts and telecommunications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JIN, Xue-bo</au><au>DU, Jing-jing</au><au>BAO, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maneuvering target tracking by adaptive statistics model</atitle><jtitle>Journal of China universities of posts and telecommunications</jtitle><addtitle>The Journal of China Universities of Posts and Telecommunications</addtitle><date>2013-02</date><risdate>2013</risdate><volume>20</volume><issue>1</issue><spage>108</spage><epage>114</epage><pages>108-114</pages><issn>1005-8885</issn><abstract>A good model can extract useful information about the target's state from observations effectively. There are many models used to tracking a, maneuvering target such as constant-velocity (CV) model, Singer acceleration model (zero-mean first-order Markov model) and current model (mean-adaptive acceleration model), etc. While due to the complexity of maneuvering target, to seek the target model which can get better performance is still a subject worthy of study. Based on statistics relation between the autocormlation function and the covariance of Markov random processing, this paper develops a model which can adaptively adjust system parameters on line. Simulations show the good estimation performance get by the model developed here, and comparing CV, Singer and current models, the model can adaptively get the model parameter while tracking the trajectory and needn't doing several tests to obtain a priori parameter.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1005-8885(13)60016-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-8885 |
ispartof | Journal of China universities of posts and telecommunications, 2013-02, Vol.20 (1), p.108-114 |
issn | 1005-8885 |
language | eng |
recordid | cdi_proquest_miscellaneous_1372638386 |
source | Alma/SFX Local Collection |
subjects | Acceleration Autocorrelation functions China maneuvering target Maneuvering targets Mathematical models On-line systems state estimation Statistics statistics relation target model Tracking 估计性能 加速模型 机动目标跟踪 电流模型 统计模型 自适应模型 跟踪机动目标 马尔可夫模型 |
title | Maneuvering target tracking by adaptive statistics model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maneuvering%20target%20tracking%20by%20adaptive%20statistics%20model&rft.jtitle=Journal%20of%20China%20universities%20of%20posts%20and%20telecommunications&rft.au=JIN,%20Xue-bo&rft.date=2013-02&rft.volume=20&rft.issue=1&rft.spage=108&rft.epage=114&rft.pages=108-114&rft.issn=1005-8885&rft_id=info:doi/10.1016/S1005-8885(13)60016-3&rft_dat=%3Cproquest_cross%3E1372638386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372638386&rft_id=info:pmid/&rft_cqvip_id=45922056&rft_els_id=S1005888513600163&rfr_iscdi=true |