Building Spectral Element Dynamic Matrices Using Finite Element Models of Waveguide Slices and Elastodynamic Equations

Structural spectral elements are formulated using the analytical solution of the applicable elastodynamic equations and, therefore, mesh refinement is not needed to analyze high frequency behavior provided the elastodynamic equations used remain valid. However, for modeling complex structures, stand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2013, Vol.20 (3), p.439-458
Hauptverfasser: Silva, P.B., Goldstein, A.L., Arruda, J.R.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 3
container_start_page 439
container_title Shock and vibration
container_volume 20
creator Silva, P.B.
Goldstein, A.L.
Arruda, J.R.F.
description Structural spectral elements are formulated using the analytical solution of the applicable elastodynamic equations and, therefore, mesh refinement is not needed to analyze high frequency behavior provided the elastodynamic equations used remain valid. However, for modeling complex structures, standard spectral elements require long and cumbersome analytical formulation. In this work, a method to build spectral finite elements from a finite element model of a slice of a structural waveguide (a structure with one dimension much larger than the other two) is proposed. First, the transfer matrix of the structural waveguide is obtained from the finite element model of a thin slice. Then, the wavenumbers and wave propagation modes are obtained from the transfer matrix and used to build the spectral element matrix. These spectral elements can be used to model homogeneous waveguides with constant cross section over long spans without the need of refining the finite element mesh along the waveguide. As an illustrating example, spectral elements are derived for straight uniform rods and beams and used to calculate the forced response in the longitudinal and transverse directions. Results obtained with the spectral element formulation are shown to agree well with results obtained with a finite element model of the whole beam. The proposed approach can be used to generate spectral elements of waveguides of arbitrary cross section and, potentially, of arbitrary order.
doi_str_mv 10.1155/2013/306437
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372622441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372622441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-c2c483e75fb0d2fe13ac749ef71295881cfbe16d1c89d04aa7b26c84ba923e293</originalsourceid><addsrcrecordid>eNo90D1PwzAQgGELgUQpTPwBj0go1F-JkxFKC0itGErFGDn2pTJynDZ2KvXfk9KK5e6GRze8CN1T8kRpmk4YoXzCSSa4vEAjmss0KRjhl8NNJEmKjLFrdBPCDyEk5ZkYof1Lb52xfoNXW9CxUw7PHDTgI349eNVYjZcqdlZDwOtwdHPrbYR_tWwNuIDbGn-rPWx6awCv3J9X3gxMhdia86vZrlfRtj7coqtauQB35z1G6_nsa_qeLD7fPqbPi0QzzuMwtcg5yLSuiGE1UK60FAXUkrIizXOq6wpoZqjOC0OEUrJimc5FpQrGgRV8jB5Of7ddu-shxLKxQYNzykPbh5JyyYYoQtCBPp6o7toQOqjLbWcb1R1KSspj3fJYtzzV5b-TL22K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372622441</pqid></control><display><type>article</type><title>Building Spectral Element Dynamic Matrices Using Finite Element Models of Waveguide Slices and Elastodynamic Equations</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Silva, P.B. ; Goldstein, A.L. ; Arruda, J.R.F.</creator><creatorcontrib>Silva, P.B. ; Goldstein, A.L. ; Arruda, J.R.F.</creatorcontrib><description>Structural spectral elements are formulated using the analytical solution of the applicable elastodynamic equations and, therefore, mesh refinement is not needed to analyze high frequency behavior provided the elastodynamic equations used remain valid. However, for modeling complex structures, standard spectral elements require long and cumbersome analytical formulation. In this work, a method to build spectral finite elements from a finite element model of a slice of a structural waveguide (a structure with one dimension much larger than the other two) is proposed. First, the transfer matrix of the structural waveguide is obtained from the finite element model of a thin slice. Then, the wavenumbers and wave propagation modes are obtained from the transfer matrix and used to build the spectral element matrix. These spectral elements can be used to model homogeneous waveguides with constant cross section over long spans without the need of refining the finite element mesh along the waveguide. As an illustrating example, spectral elements are derived for straight uniform rods and beams and used to calculate the forced response in the longitudinal and transverse directions. Results obtained with the spectral element formulation are shown to agree well with results obtained with a finite element model of the whole beam. The proposed approach can be used to generate spectral elements of waveguides of arbitrary cross section and, potentially, of arbitrary order.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2013/306437</identifier><language>eng</language><subject>Beams (radiation) ; Construction ; Elastodynamics ; Finite element method ; Mathematical analysis ; Mathematical models ; Spectra ; Waveguides</subject><ispartof>Shock and vibration, 2013, Vol.20 (3), p.439-458</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c233t-c2c483e75fb0d2fe13ac749ef71295881cfbe16d1c89d04aa7b26c84ba923e293</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Silva, P.B.</creatorcontrib><creatorcontrib>Goldstein, A.L.</creatorcontrib><creatorcontrib>Arruda, J.R.F.</creatorcontrib><title>Building Spectral Element Dynamic Matrices Using Finite Element Models of Waveguide Slices and Elastodynamic Equations</title><title>Shock and vibration</title><description>Structural spectral elements are formulated using the analytical solution of the applicable elastodynamic equations and, therefore, mesh refinement is not needed to analyze high frequency behavior provided the elastodynamic equations used remain valid. However, for modeling complex structures, standard spectral elements require long and cumbersome analytical formulation. In this work, a method to build spectral finite elements from a finite element model of a slice of a structural waveguide (a structure with one dimension much larger than the other two) is proposed. First, the transfer matrix of the structural waveguide is obtained from the finite element model of a thin slice. Then, the wavenumbers and wave propagation modes are obtained from the transfer matrix and used to build the spectral element matrix. These spectral elements can be used to model homogeneous waveguides with constant cross section over long spans without the need of refining the finite element mesh along the waveguide. As an illustrating example, spectral elements are derived for straight uniform rods and beams and used to calculate the forced response in the longitudinal and transverse directions. Results obtained with the spectral element formulation are shown to agree well with results obtained with a finite element model of the whole beam. The proposed approach can be used to generate spectral elements of waveguides of arbitrary cross section and, potentially, of arbitrary order.</description><subject>Beams (radiation)</subject><subject>Construction</subject><subject>Elastodynamics</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Spectra</subject><subject>Waveguides</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo90D1PwzAQgGELgUQpTPwBj0go1F-JkxFKC0itGErFGDn2pTJynDZ2KvXfk9KK5e6GRze8CN1T8kRpmk4YoXzCSSa4vEAjmss0KRjhl8NNJEmKjLFrdBPCDyEk5ZkYof1Lb52xfoNXW9CxUw7PHDTgI349eNVYjZcqdlZDwOtwdHPrbYR_tWwNuIDbGn-rPWx6awCv3J9X3gxMhdia86vZrlfRtj7coqtauQB35z1G6_nsa_qeLD7fPqbPi0QzzuMwtcg5yLSuiGE1UK60FAXUkrIizXOq6wpoZqjOC0OEUrJimc5FpQrGgRV8jB5Of7ddu-shxLKxQYNzykPbh5JyyYYoQtCBPp6o7toQOqjLbWcb1R1KSspj3fJYtzzV5b-TL22K</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Silva, P.B.</creator><creator>Goldstein, A.L.</creator><creator>Arruda, J.R.F.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2013</creationdate><title>Building Spectral Element Dynamic Matrices Using Finite Element Models of Waveguide Slices and Elastodynamic Equations</title><author>Silva, P.B. ; Goldstein, A.L. ; Arruda, J.R.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-c2c483e75fb0d2fe13ac749ef71295881cfbe16d1c89d04aa7b26c84ba923e293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Beams (radiation)</topic><topic>Construction</topic><topic>Elastodynamics</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Spectra</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, P.B.</creatorcontrib><creatorcontrib>Goldstein, A.L.</creatorcontrib><creatorcontrib>Arruda, J.R.F.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, P.B.</au><au>Goldstein, A.L.</au><au>Arruda, J.R.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building Spectral Element Dynamic Matrices Using Finite Element Models of Waveguide Slices and Elastodynamic Equations</atitle><jtitle>Shock and vibration</jtitle><date>2013</date><risdate>2013</risdate><volume>20</volume><issue>3</issue><spage>439</spage><epage>458</epage><pages>439-458</pages><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>Structural spectral elements are formulated using the analytical solution of the applicable elastodynamic equations and, therefore, mesh refinement is not needed to analyze high frequency behavior provided the elastodynamic equations used remain valid. However, for modeling complex structures, standard spectral elements require long and cumbersome analytical formulation. In this work, a method to build spectral finite elements from a finite element model of a slice of a structural waveguide (a structure with one dimension much larger than the other two) is proposed. First, the transfer matrix of the structural waveguide is obtained from the finite element model of a thin slice. Then, the wavenumbers and wave propagation modes are obtained from the transfer matrix and used to build the spectral element matrix. These spectral elements can be used to model homogeneous waveguides with constant cross section over long spans without the need of refining the finite element mesh along the waveguide. As an illustrating example, spectral elements are derived for straight uniform rods and beams and used to calculate the forced response in the longitudinal and transverse directions. Results obtained with the spectral element formulation are shown to agree well with results obtained with a finite element model of the whole beam. The proposed approach can be used to generate spectral elements of waveguides of arbitrary cross section and, potentially, of arbitrary order.</abstract><doi>10.1155/2013/306437</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9622
ispartof Shock and vibration, 2013, Vol.20 (3), p.439-458
issn 1070-9622
1875-9203
language eng
recordid cdi_proquest_miscellaneous_1372622441
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Beams (radiation)
Construction
Elastodynamics
Finite element method
Mathematical analysis
Mathematical models
Spectra
Waveguides
title Building Spectral Element Dynamic Matrices Using Finite Element Models of Waveguide Slices and Elastodynamic Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20Spectral%20Element%20Dynamic%20Matrices%20Using%20Finite%20Element%20Models%20of%20Waveguide%20Slices%20and%20Elastodynamic%20Equations&rft.jtitle=Shock%20and%20vibration&rft.au=Silva,%20P.B.&rft.date=2013&rft.volume=20&rft.issue=3&rft.spage=439&rft.epage=458&rft.pages=439-458&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2013/306437&rft_dat=%3Cproquest_cross%3E1372622441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372622441&rft_id=info:pmid/&rfr_iscdi=true