Computational Development of Polycrystalline Alloys Using Automated Importance Sampling

Increasingly stringent demands are being placed on alloys used for high temperature structural applications. For such applications, the successful development of new alloys requires them to exceed numerous property targets. Combinatorial alloy design tools to achieve this are now available. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2012-03
Hauptverfasser: Conduit, Bryce, Conduit, Gareth, Mignanelli, Paul, Stone, Howard, Hardy, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title AIP conference proceedings
container_volume
creator Conduit, Bryce
Conduit, Gareth
Mignanelli, Paul
Stone, Howard
Hardy, Mark
description Increasingly stringent demands are being placed on alloys used for high temperature structural applications. For such applications, the successful development of new alloys requires them to exceed numerous property targets. Combinatorial alloy design tools to achieve this are now available. However, efficient selection of optimal alloy compositions requires automated optimisation algorithms. In this work, an approach utilising importance sampling has been used to design a new Nibased polycrystalline alloy. Neural network models have been built to describe various mechanical and thermodynamic properties for Ni-based superalloys. Minimum acceptable values for these properties were then specified, according to design criteria. The boundary of those compositions which satisfy these minimum requirements was then established by the automated importance sampling technique. On a standard desktop computer this technique can output up to ~100000 sets of compositions and design variables per second, which satisfy the design specifications.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372610815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372610815</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_13726108153</originalsourceid><addsrcrecordid>eNqVyrsKwjAUANAMCj7_IaOLkD60dRQf6Cao6FZCvS2Vm9zYmwj9ex38AaeznJ4YKrVK53Ga3AdixPxUKl5lWT4Utw0ZF7z2DVmNcgtvQHIGrJdUyRNhV7Yde43YWJBrROpYXrmxtVwHT0Z7eMijcdR6bUuQZ23ct9YT0a80Mkx_jsVsv7tsDnPX0isA-8I0XAKitkCBiyjJ4mWk8miR_FE_bQpGPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372610815</pqid></control><display><type>article</type><title>Computational Development of Polycrystalline Alloys Using Automated Importance Sampling</title><source>AIP Journals Complete</source><creator>Conduit, Bryce ; Conduit, Gareth ; Mignanelli, Paul ; Stone, Howard ; Hardy, Mark</creator><creatorcontrib>Conduit, Bryce ; Conduit, Gareth ; Mignanelli, Paul ; Stone, Howard ; Hardy, Mark</creatorcontrib><description>Increasingly stringent demands are being placed on alloys used for high temperature structural applications. For such applications, the successful development of new alloys requires them to exceed numerous property targets. Combinatorial alloy design tools to achieve this are now available. However, efficient selection of optimal alloy compositions requires automated optimisation algorithms. In this work, an approach utilising importance sampling has been used to design a new Nibased polycrystalline alloy. Neural network models have been built to describe various mechanical and thermodynamic properties for Ni-based superalloys. Minimum acceptable values for these properties were then specified, according to design criteria. The boundary of those compositions which satisfy these minimum requirements was then established by the automated importance sampling technique. On a standard desktop computer this technique can output up to ~100000 sets of compositions and design variables per second, which satisfy the design specifications.</description><identifier>ISSN: 0094-243X</identifier><language>eng</language><subject>Alloys ; Automated ; Combinatorial analysis ; Importance sampling ; Mathematical analysis ; Mathematical models ; Neural networks ; Optimization</subject><ispartof>AIP conference proceedings, 2012-03</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Conduit, Bryce</creatorcontrib><creatorcontrib>Conduit, Gareth</creatorcontrib><creatorcontrib>Mignanelli, Paul</creatorcontrib><creatorcontrib>Stone, Howard</creatorcontrib><creatorcontrib>Hardy, Mark</creatorcontrib><title>Computational Development of Polycrystalline Alloys Using Automated Importance Sampling</title><title>AIP conference proceedings</title><description>Increasingly stringent demands are being placed on alloys used for high temperature structural applications. For such applications, the successful development of new alloys requires them to exceed numerous property targets. Combinatorial alloy design tools to achieve this are now available. However, efficient selection of optimal alloy compositions requires automated optimisation algorithms. In this work, an approach utilising importance sampling has been used to design a new Nibased polycrystalline alloy. Neural network models have been built to describe various mechanical and thermodynamic properties for Ni-based superalloys. Minimum acceptable values for these properties were then specified, according to design criteria. The boundary of those compositions which satisfy these minimum requirements was then established by the automated importance sampling technique. On a standard desktop computer this technique can output up to ~100000 sets of compositions and design variables per second, which satisfy the design specifications.</description><subject>Alloys</subject><subject>Automated</subject><subject>Combinatorial analysis</subject><subject>Importance sampling</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Optimization</subject><issn>0094-243X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqVyrsKwjAUANAMCj7_IaOLkD60dRQf6Cao6FZCvS2Vm9zYmwj9ex38AaeznJ4YKrVK53Ga3AdixPxUKl5lWT4Utw0ZF7z2DVmNcgtvQHIGrJdUyRNhV7Yde43YWJBrROpYXrmxtVwHT0Z7eMijcdR6bUuQZ23ct9YT0a80Mkx_jsVsv7tsDnPX0isA-8I0XAKitkCBiyjJ4mWk8miR_FE_bQpGPg</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Conduit, Bryce</creator><creator>Conduit, Gareth</creator><creator>Mignanelli, Paul</creator><creator>Stone, Howard</creator><creator>Hardy, Mark</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120315</creationdate><title>Computational Development of Polycrystalline Alloys Using Automated Importance Sampling</title><author>Conduit, Bryce ; Conduit, Gareth ; Mignanelli, Paul ; Stone, Howard ; Hardy, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_13726108153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloys</topic><topic>Automated</topic><topic>Combinatorial analysis</topic><topic>Importance sampling</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conduit, Bryce</creatorcontrib><creatorcontrib>Conduit, Gareth</creatorcontrib><creatorcontrib>Mignanelli, Paul</creatorcontrib><creatorcontrib>Stone, Howard</creatorcontrib><creatorcontrib>Hardy, Mark</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conduit, Bryce</au><au>Conduit, Gareth</au><au>Mignanelli, Paul</au><au>Stone, Howard</au><au>Hardy, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Development of Polycrystalline Alloys Using Automated Importance Sampling</atitle><jtitle>AIP conference proceedings</jtitle><date>2012-03-15</date><risdate>2012</risdate><issn>0094-243X</issn><abstract>Increasingly stringent demands are being placed on alloys used for high temperature structural applications. For such applications, the successful development of new alloys requires them to exceed numerous property targets. Combinatorial alloy design tools to achieve this are now available. However, efficient selection of optimal alloy compositions requires automated optimisation algorithms. In this work, an approach utilising importance sampling has been used to design a new Nibased polycrystalline alloy. Neural network models have been built to describe various mechanical and thermodynamic properties for Ni-based superalloys. Minimum acceptable values for these properties were then specified, according to design criteria. The boundary of those compositions which satisfy these minimum requirements was then established by the automated importance sampling technique. On a standard desktop computer this technique can output up to ~100000 sets of compositions and design variables per second, which satisfy the design specifications.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2012-03
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_1372610815
source AIP Journals Complete
subjects Alloys
Automated
Combinatorial analysis
Importance sampling
Mathematical analysis
Mathematical models
Neural networks
Optimization
title Computational Development of Polycrystalline Alloys Using Automated Importance Sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Development%20of%20Polycrystalline%20Alloys%20Using%20Automated%20Importance%20Sampling&rft.jtitle=AIP%20conference%20proceedings&rft.au=Conduit,%20Bryce&rft.date=2012-03-15&rft.issn=0094-243X&rft_id=info:doi/&rft_dat=%3Cproquest%3E1372610815%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372610815&rft_id=info:pmid/&rfr_iscdi=true