Statistical and Neural-Network Approaches for the Classification of Induction Machine Faults Using the Ambiguity Plane Representation

A novel hybrid feature-reduction methodology is proposed as a contribution to the induction motor fault classification, to improve the classification rate of the current waveform events related to varieties of induction machine faults. This methodology relies on the combination of a feature-extracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2013-09, Vol.60 (9), p.4034-4042
Hauptverfasser: Boukra, T., Lebaroud, A., Clerc, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4042
container_issue 9
container_start_page 4034
container_title IEEE transactions on industrial electronics (1982)
container_volume 60
creator Boukra, T.
Lebaroud, A.
Clerc, G.
description A novel hybrid feature-reduction methodology is proposed as a contribution to the induction motor fault classification, to improve the classification rate of the current waveform events related to varieties of induction machine faults. This methodology relies on the combination of a feature-extraction technique based on the smoothed ambiguity plane designed for maximizing the separability between classes using Fisher's discriminant ratio, with the feature-selection technique, based on the proposed error-probability model to select an optimal number of the extracted features. This model depends on two parameters, namely, the smoothing kernel used to derive the features and the distance measurement. The proposed methodology is validated experimentally on a 5.5-kW induction motor test bench, and their performances are compared with the classification algorithm based on neural networks with sigmoid and wavelets in hidden neurons, known as a flexible tool for learning and recognizing system faults. The results obtained show an accurate classification independent from the load level.
doi_str_mv 10.1109/TIE.2012.2216242
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372609837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6290359</ieee_id><sourcerecordid>2967017161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ed27fe46a0f5faf3e7962844a4796c1c351f815f19382b5fc5951dba5663d6493</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EEqFwR-JiiQscNvh77WMUtTRSKAjas-XsjhuXzTrYXlB_QP93naTqgZPH1vOOxvMg9J6SOaXEfLlenc8ZoWzOGFVMsBdoRqVsG2OEfolmhLW6IUSo1-hNzneEUCGpnKGHX8WVkEvo3IDd2OMrmJIbmiso_2L6jRf7fYqu20LGPiZctoCXg8s5-JooIY44erwa-6k7Xr5VNIyAL9w0lIxvchhvj6HFbhNup1Du8Y_BVeAn7BNkGMuxyVv0yrshw7un8wzdXJxfLy-b9fevq-Vi3XRc6tJAz1oPQjnipXeeQ2sU00I4UYuOVoh6TaWnhmu2kb6TRtJ-46RSvFfC8DP0-dR36wa7T2Hn0r2NLtjLxdoe3ggxRGjW_qWV_XRi6wL-TJCL3YXcwXAYP07ZUt4yRYzmbUU__ofexSmN9SeVEkYrUVVUipyoLsWcE_jnCSixB4e2OrQHh_bJYY18OEUCADzjihnCpeGPHeiX3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349864155</pqid></control><display><type>article</type><title>Statistical and Neural-Network Approaches for the Classification of Induction Machine Faults Using the Ambiguity Plane Representation</title><source>IEEE Electronic Library (IEL)</source><creator>Boukra, T. ; Lebaroud, A. ; Clerc, G.</creator><creatorcontrib>Boukra, T. ; Lebaroud, A. ; Clerc, G.</creatorcontrib><description>A novel hybrid feature-reduction methodology is proposed as a contribution to the induction motor fault classification, to improve the classification rate of the current waveform events related to varieties of induction machine faults. This methodology relies on the combination of a feature-extraction technique based on the smoothed ambiguity plane designed for maximizing the separability between classes using Fisher's discriminant ratio, with the feature-selection technique, based on the proposed error-probability model to select an optimal number of the extracted features. This model depends on two parameters, namely, the smoothing kernel used to derive the features and the distance measurement. The proposed methodology is validated experimentally on a 5.5-kW induction motor test bench, and their performances are compared with the classification algorithm based on neural networks with sigmoid and wavelets in hidden neurons, known as a flexible tool for learning and recognizing system faults. The results obtained show an accurate classification independent from the load level.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2012.2216242</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Ambiguity ; Ambiguity plane ; Artificial neural networks ; artificial neural networks (ANNs) ; Classification ; discrete wavelet transforms ; distance measurement ; Electric power ; Engineering Sciences ; Error probability ; fault diagnosis ; Faults ; Feature extraction ; frequency-domain analysis ; Induction motors ; Kernel ; Methodology ; Motors ; Neural networks ; Planes ; Studies ; time-domain analysis ; time-frequency-domain analysis ; Training</subject><ispartof>IEEE transactions on industrial electronics (1982), 2013-09, Vol.60 (9), p.4034-4042</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-ed27fe46a0f5faf3e7962844a4796c1c351f815f19382b5fc5951dba5663d6493</citedby><cites>FETCH-LOGICAL-c358t-ed27fe46a0f5faf3e7962844a4796c1c351f815f19382b5fc5951dba5663d6493</cites><orcidid>0000-0001-7202-056X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6290359$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6290359$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00904827$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boukra, T.</creatorcontrib><creatorcontrib>Lebaroud, A.</creatorcontrib><creatorcontrib>Clerc, G.</creatorcontrib><title>Statistical and Neural-Network Approaches for the Classification of Induction Machine Faults Using the Ambiguity Plane Representation</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>A novel hybrid feature-reduction methodology is proposed as a contribution to the induction motor fault classification, to improve the classification rate of the current waveform events related to varieties of induction machine faults. This methodology relies on the combination of a feature-extraction technique based on the smoothed ambiguity plane designed for maximizing the separability between classes using Fisher's discriminant ratio, with the feature-selection technique, based on the proposed error-probability model to select an optimal number of the extracted features. This model depends on two parameters, namely, the smoothing kernel used to derive the features and the distance measurement. The proposed methodology is validated experimentally on a 5.5-kW induction motor test bench, and their performances are compared with the classification algorithm based on neural networks with sigmoid and wavelets in hidden neurons, known as a flexible tool for learning and recognizing system faults. The results obtained show an accurate classification independent from the load level.</description><subject>Algorithms</subject><subject>Ambiguity</subject><subject>Ambiguity plane</subject><subject>Artificial neural networks</subject><subject>artificial neural networks (ANNs)</subject><subject>Classification</subject><subject>discrete wavelet transforms</subject><subject>distance measurement</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Error probability</subject><subject>fault diagnosis</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>frequency-domain analysis</subject><subject>Induction motors</subject><subject>Kernel</subject><subject>Methodology</subject><subject>Motors</subject><subject>Neural networks</subject><subject>Planes</subject><subject>Studies</subject><subject>time-domain analysis</subject><subject>time-frequency-domain analysis</subject><subject>Training</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1vEzEQhi0EEqFwR-JiiQscNvh77WMUtTRSKAjas-XsjhuXzTrYXlB_QP93naTqgZPH1vOOxvMg9J6SOaXEfLlenc8ZoWzOGFVMsBdoRqVsG2OEfolmhLW6IUSo1-hNzneEUCGpnKGHX8WVkEvo3IDd2OMrmJIbmiso_2L6jRf7fYqu20LGPiZctoCXg8s5-JooIY44erwa-6k7Xr5VNIyAL9w0lIxvchhvj6HFbhNup1Du8Y_BVeAn7BNkGMuxyVv0yrshw7un8wzdXJxfLy-b9fevq-Vi3XRc6tJAz1oPQjnipXeeQ2sU00I4UYuOVoh6TaWnhmu2kb6TRtJ-46RSvFfC8DP0-dR36wa7T2Hn0r2NLtjLxdoe3ggxRGjW_qWV_XRi6wL-TJCL3YXcwXAYP07ZUt4yRYzmbUU__ofexSmN9SeVEkYrUVVUipyoLsWcE_jnCSixB4e2OrQHh_bJYY18OEUCADzjihnCpeGPHeiX3A</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Boukra, T.</creator><creator>Lebaroud, A.</creator><creator>Clerc, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7202-056X</orcidid></search><sort><creationdate>20130901</creationdate><title>Statistical and Neural-Network Approaches for the Classification of Induction Machine Faults Using the Ambiguity Plane Representation</title><author>Boukra, T. ; Lebaroud, A. ; Clerc, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ed27fe46a0f5faf3e7962844a4796c1c351f815f19382b5fc5951dba5663d6493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Ambiguity</topic><topic>Ambiguity plane</topic><topic>Artificial neural networks</topic><topic>artificial neural networks (ANNs)</topic><topic>Classification</topic><topic>discrete wavelet transforms</topic><topic>distance measurement</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Error probability</topic><topic>fault diagnosis</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>frequency-domain analysis</topic><topic>Induction motors</topic><topic>Kernel</topic><topic>Methodology</topic><topic>Motors</topic><topic>Neural networks</topic><topic>Planes</topic><topic>Studies</topic><topic>time-domain analysis</topic><topic>time-frequency-domain analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boukra, T.</creatorcontrib><creatorcontrib>Lebaroud, A.</creatorcontrib><creatorcontrib>Clerc, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boukra, T.</au><au>Lebaroud, A.</au><au>Clerc, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical and Neural-Network Approaches for the Classification of Induction Machine Faults Using the Ambiguity Plane Representation</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>60</volume><issue>9</issue><spage>4034</spage><epage>4042</epage><pages>4034-4042</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>A novel hybrid feature-reduction methodology is proposed as a contribution to the induction motor fault classification, to improve the classification rate of the current waveform events related to varieties of induction machine faults. This methodology relies on the combination of a feature-extraction technique based on the smoothed ambiguity plane designed for maximizing the separability between classes using Fisher's discriminant ratio, with the feature-selection technique, based on the proposed error-probability model to select an optimal number of the extracted features. This model depends on two parameters, namely, the smoothing kernel used to derive the features and the distance measurement. The proposed methodology is validated experimentally on a 5.5-kW induction motor test bench, and their performances are compared with the classification algorithm based on neural networks with sigmoid and wavelets in hidden neurons, known as a flexible tool for learning and recognizing system faults. The results obtained show an accurate classification independent from the load level.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2012.2216242</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7202-056X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2013-09, Vol.60 (9), p.4034-4042
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_miscellaneous_1372609837
source IEEE Electronic Library (IEL)
subjects Algorithms
Ambiguity
Ambiguity plane
Artificial neural networks
artificial neural networks (ANNs)
Classification
discrete wavelet transforms
distance measurement
Electric power
Engineering Sciences
Error probability
fault diagnosis
Faults
Feature extraction
frequency-domain analysis
Induction motors
Kernel
Methodology
Motors
Neural networks
Planes
Studies
time-domain analysis
time-frequency-domain analysis
Training
title Statistical and Neural-Network Approaches for the Classification of Induction Machine Faults Using the Ambiguity Plane Representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20and%20Neural-Network%20Approaches%20for%20the%20Classification%20of%20Induction%20Machine%20Faults%20Using%20the%20Ambiguity%20Plane%20Representation&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Boukra,%20T.&rft.date=2013-09-01&rft.volume=60&rft.issue=9&rft.spage=4034&rft.epage=4042&rft.pages=4034-4042&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2012.2216242&rft_dat=%3Cproquest_RIE%3E2967017161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349864155&rft_id=info:pmid/&rft_ieee_id=6290359&rfr_iscdi=true