Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix
The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy stora...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2013-06, Vol.5 (12), p.5486-5492 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5492 |
---|---|
container_issue | 12 |
container_start_page | 5486 |
container_title | ACS applied materials & interfaces |
container_volume | 5 |
creator | Grabowski, Christopher A Fillery, Scott P Westing, Nicholas M Chi, Changzai Meth, Jeffrey S Durstock, Michael F Vaia, Richard A |
description | The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic–polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure–performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdownfield exclusion and agglomerationhave been mitigated in this experiment to focus on what impact the polymer and polymer–nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5–15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica. |
doi_str_mv | 10.1021/am4005623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372081328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372081328</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-2628d6649e601c49e17c1ac972c9c05abdf791ae280c3b09b0893f23064394703</originalsourceid><addsrcrecordid>eNptkLtOwzAARS0EoqUw8APICxIMAT8SJ2YrhQJSeQjKHDmOo7rEcbATQTf-gT_kSwjqY2K6dzg60r0AHGJ0hhHB58KECEWM0C3QxzwMg4REZHvTw7AH9ryfI8QoQdEu6BHKKMcJ7YPiSqtSycZpCS-dEm-5_aigruCLLrUUP1_fQ2NdPbOth0-2XBjl4IOorLSmtl43Co51afwFnM4UfLalgraATdfX8L3o3J_7YKcQpVcHqxyA1_H1dHQbTB5v7kbDSSBogpuAMJLkjIVcMYRlFziWWEgeE8klikSWFzHHQpEESZohnqGE04JQxELKwxjRAThZemtn31vlm9RoL1VZikp1E1JMY4ISTEnSoadLVDrrvVNFWjtthFukGKV_t6abWzv2aKVtM6PyDbn-sQOOl4CQPp3b1lXdyn9Ev9ydffA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372081328</pqid></control><display><type>article</type><title>Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Grabowski, Christopher A ; Fillery, Scott P ; Westing, Nicholas M ; Chi, Changzai ; Meth, Jeffrey S ; Durstock, Michael F ; Vaia, Richard A</creator><creatorcontrib>Grabowski, Christopher A ; Fillery, Scott P ; Westing, Nicholas M ; Chi, Changzai ; Meth, Jeffrey S ; Durstock, Michael F ; Vaia, Richard A</creatorcontrib><description>The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic–polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure–performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdownfield exclusion and agglomerationhave been mitigated in this experiment to focus on what impact the polymer and polymer–nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5–15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am4005623</identifier><identifier>PMID: 23639183</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Colloids - chemistry ; Electricity ; Electrodes ; Microscopy, Electron, Transmission ; Nanocomposites - chemistry ; Nanocomposites - ultrastructure ; Polymers - chemistry ; Silicon Dioxide - chemistry</subject><ispartof>ACS applied materials & interfaces, 2013-06, Vol.5 (12), p.5486-5492</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-2628d6649e601c49e17c1ac972c9c05abdf791ae280c3b09b0893f23064394703</citedby><cites>FETCH-LOGICAL-a381t-2628d6649e601c49e17c1ac972c9c05abdf791ae280c3b09b0893f23064394703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am4005623$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am4005623$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23639183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grabowski, Christopher A</creatorcontrib><creatorcontrib>Fillery, Scott P</creatorcontrib><creatorcontrib>Westing, Nicholas M</creatorcontrib><creatorcontrib>Chi, Changzai</creatorcontrib><creatorcontrib>Meth, Jeffrey S</creatorcontrib><creatorcontrib>Durstock, Michael F</creatorcontrib><creatorcontrib>Vaia, Richard A</creatorcontrib><title>Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic–polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure–performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdownfield exclusion and agglomerationhave been mitigated in this experiment to focus on what impact the polymer and polymer–nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5–15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.</description><subject>Colloids - chemistry</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanocomposites - chemistry</subject><subject>Nanocomposites - ultrastructure</subject><subject>Polymers - chemistry</subject><subject>Silicon Dioxide - chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkLtOwzAARS0EoqUw8APICxIMAT8SJ2YrhQJSeQjKHDmOo7rEcbATQTf-gT_kSwjqY2K6dzg60r0AHGJ0hhHB58KECEWM0C3QxzwMg4REZHvTw7AH9ryfI8QoQdEu6BHKKMcJ7YPiSqtSycZpCS-dEm-5_aigruCLLrUUP1_fQ2NdPbOth0-2XBjl4IOorLSmtl43Co51afwFnM4UfLalgraATdfX8L3o3J_7YKcQpVcHqxyA1_H1dHQbTB5v7kbDSSBogpuAMJLkjIVcMYRlFziWWEgeE8klikSWFzHHQpEESZohnqGE04JQxELKwxjRAThZemtn31vlm9RoL1VZikp1E1JMY4ISTEnSoadLVDrrvVNFWjtthFukGKV_t6abWzv2aKVtM6PyDbn-sQOOl4CQPp3b1lXdyn9Ev9ydffA</recordid><startdate>20130626</startdate><enddate>20130626</enddate><creator>Grabowski, Christopher A</creator><creator>Fillery, Scott P</creator><creator>Westing, Nicholas M</creator><creator>Chi, Changzai</creator><creator>Meth, Jeffrey S</creator><creator>Durstock, Michael F</creator><creator>Vaia, Richard A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130626</creationdate><title>Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix</title><author>Grabowski, Christopher A ; Fillery, Scott P ; Westing, Nicholas M ; Chi, Changzai ; Meth, Jeffrey S ; Durstock, Michael F ; Vaia, Richard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-2628d6649e601c49e17c1ac972c9c05abdf791ae280c3b09b0893f23064394703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Colloids - chemistry</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanocomposites - chemistry</topic><topic>Nanocomposites - ultrastructure</topic><topic>Polymers - chemistry</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabowski, Christopher A</creatorcontrib><creatorcontrib>Fillery, Scott P</creatorcontrib><creatorcontrib>Westing, Nicholas M</creatorcontrib><creatorcontrib>Chi, Changzai</creatorcontrib><creatorcontrib>Meth, Jeffrey S</creatorcontrib><creatorcontrib>Durstock, Michael F</creatorcontrib><creatorcontrib>Vaia, Richard A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabowski, Christopher A</au><au>Fillery, Scott P</au><au>Westing, Nicholas M</au><au>Chi, Changzai</au><au>Meth, Jeffrey S</au><au>Durstock, Michael F</au><au>Vaia, Richard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2013-06-26</date><risdate>2013</risdate><volume>5</volume><issue>12</issue><spage>5486</spage><epage>5492</epage><pages>5486-5492</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic–polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure–performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdownfield exclusion and agglomerationhave been mitigated in this experiment to focus on what impact the polymer and polymer–nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5–15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23639183</pmid><doi>10.1021/am4005623</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2013-06, Vol.5 (12), p.5486-5492 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1372081328 |
source | MEDLINE; American Chemical Society Journals |
subjects | Colloids - chemistry Electricity Electrodes Microscopy, Electron, Transmission Nanocomposites - chemistry Nanocomposites - ultrastructure Polymers - chemistry Silicon Dioxide - chemistry |
title | Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20Breakdown%20in%20Silica%E2%80%93Amorphous%20Polymer%20Nanocomposite%20Films:%20The%20Role%20of%20the%20Polymer%20Matrix&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Grabowski,%20Christopher%20A&rft.date=2013-06-26&rft.volume=5&rft.issue=12&rft.spage=5486&rft.epage=5492&rft.pages=5486-5492&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am4005623&rft_dat=%3Cproquest_cross%3E1372081328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372081328&rft_id=info:pmid/23639183&rfr_iscdi=true |