Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix

The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy stora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2013-06, Vol.5 (12), p.5486-5492
Hauptverfasser: Grabowski, Christopher A, Fillery, Scott P, Westing, Nicholas M, Chi, Changzai, Meth, Jeffrey S, Durstock, Michael F, Vaia, Richard A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5492
container_issue 12
container_start_page 5486
container_title ACS applied materials & interfaces
container_volume 5
creator Grabowski, Christopher A
Fillery, Scott P
Westing, Nicholas M
Chi, Changzai
Meth, Jeffrey S
Durstock, Michael F
Vaia, Richard A
description The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic–polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure–performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdownfield exclusion and agglomerationhave been mitigated in this experiment to focus on what impact the polymer and polymer–nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5–15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.
doi_str_mv 10.1021/am4005623
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372081328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372081328</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-2628d6649e601c49e17c1ac972c9c05abdf791ae280c3b09b0893f23064394703</originalsourceid><addsrcrecordid>eNptkLtOwzAARS0EoqUw8APICxIMAT8SJ2YrhQJSeQjKHDmOo7rEcbATQTf-gT_kSwjqY2K6dzg60r0AHGJ0hhHB58KECEWM0C3QxzwMg4REZHvTw7AH9ryfI8QoQdEu6BHKKMcJ7YPiSqtSycZpCS-dEm-5_aigruCLLrUUP1_fQ2NdPbOth0-2XBjl4IOorLSmtl43Co51afwFnM4UfLalgraATdfX8L3o3J_7YKcQpVcHqxyA1_H1dHQbTB5v7kbDSSBogpuAMJLkjIVcMYRlFziWWEgeE8klikSWFzHHQpEESZohnqGE04JQxELKwxjRAThZemtn31vlm9RoL1VZikp1E1JMY4ISTEnSoadLVDrrvVNFWjtthFukGKV_t6abWzv2aKVtM6PyDbn-sQOOl4CQPp3b1lXdyn9Ev9ydffA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372081328</pqid></control><display><type>article</type><title>Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Grabowski, Christopher A ; Fillery, Scott P ; Westing, Nicholas M ; Chi, Changzai ; Meth, Jeffrey S ; Durstock, Michael F ; Vaia, Richard A</creator><creatorcontrib>Grabowski, Christopher A ; Fillery, Scott P ; Westing, Nicholas M ; Chi, Changzai ; Meth, Jeffrey S ; Durstock, Michael F ; Vaia, Richard A</creatorcontrib><description>The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic–polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure–performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdownfield exclusion and agglomerationhave been mitigated in this experiment to focus on what impact the polymer and polymer–nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5–15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am4005623</identifier><identifier>PMID: 23639183</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Colloids - chemistry ; Electricity ; Electrodes ; Microscopy, Electron, Transmission ; Nanocomposites - chemistry ; Nanocomposites - ultrastructure ; Polymers - chemistry ; Silicon Dioxide - chemistry</subject><ispartof>ACS applied materials &amp; interfaces, 2013-06, Vol.5 (12), p.5486-5492</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-2628d6649e601c49e17c1ac972c9c05abdf791ae280c3b09b0893f23064394703</citedby><cites>FETCH-LOGICAL-a381t-2628d6649e601c49e17c1ac972c9c05abdf791ae280c3b09b0893f23064394703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am4005623$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am4005623$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23639183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grabowski, Christopher A</creatorcontrib><creatorcontrib>Fillery, Scott P</creatorcontrib><creatorcontrib>Westing, Nicholas M</creatorcontrib><creatorcontrib>Chi, Changzai</creatorcontrib><creatorcontrib>Meth, Jeffrey S</creatorcontrib><creatorcontrib>Durstock, Michael F</creatorcontrib><creatorcontrib>Vaia, Richard A</creatorcontrib><title>Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic–polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure–performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdownfield exclusion and agglomerationhave been mitigated in this experiment to focus on what impact the polymer and polymer–nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5–15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.</description><subject>Colloids - chemistry</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanocomposites - chemistry</subject><subject>Nanocomposites - ultrastructure</subject><subject>Polymers - chemistry</subject><subject>Silicon Dioxide - chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkLtOwzAARS0EoqUw8APICxIMAT8SJ2YrhQJSeQjKHDmOo7rEcbATQTf-gT_kSwjqY2K6dzg60r0AHGJ0hhHB58KECEWM0C3QxzwMg4REZHvTw7AH9ryfI8QoQdEu6BHKKMcJ7YPiSqtSycZpCS-dEm-5_aigruCLLrUUP1_fQ2NdPbOth0-2XBjl4IOorLSmtl43Co51afwFnM4UfLalgraATdfX8L3o3J_7YKcQpVcHqxyA1_H1dHQbTB5v7kbDSSBogpuAMJLkjIVcMYRlFziWWEgeE8klikSWFzHHQpEESZohnqGE04JQxELKwxjRAThZemtn31vlm9RoL1VZikp1E1JMY4ISTEnSoadLVDrrvVNFWjtthFukGKV_t6abWzv2aKVtM6PyDbn-sQOOl4CQPp3b1lXdyn9Ev9ydffA</recordid><startdate>20130626</startdate><enddate>20130626</enddate><creator>Grabowski, Christopher A</creator><creator>Fillery, Scott P</creator><creator>Westing, Nicholas M</creator><creator>Chi, Changzai</creator><creator>Meth, Jeffrey S</creator><creator>Durstock, Michael F</creator><creator>Vaia, Richard A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130626</creationdate><title>Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix</title><author>Grabowski, Christopher A ; Fillery, Scott P ; Westing, Nicholas M ; Chi, Changzai ; Meth, Jeffrey S ; Durstock, Michael F ; Vaia, Richard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-2628d6649e601c49e17c1ac972c9c05abdf791ae280c3b09b0893f23064394703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Colloids - chemistry</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanocomposites - chemistry</topic><topic>Nanocomposites - ultrastructure</topic><topic>Polymers - chemistry</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabowski, Christopher A</creatorcontrib><creatorcontrib>Fillery, Scott P</creatorcontrib><creatorcontrib>Westing, Nicholas M</creatorcontrib><creatorcontrib>Chi, Changzai</creatorcontrib><creatorcontrib>Meth, Jeffrey S</creatorcontrib><creatorcontrib>Durstock, Michael F</creatorcontrib><creatorcontrib>Vaia, Richard A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabowski, Christopher A</au><au>Fillery, Scott P</au><au>Westing, Nicholas M</au><au>Chi, Changzai</au><au>Meth, Jeffrey S</au><au>Durstock, Michael F</au><au>Vaia, Richard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2013-06-26</date><risdate>2013</risdate><volume>5</volume><issue>12</issue><spage>5486</spage><epage>5492</epage><pages>5486-5492</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic–polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure–performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdownfield exclusion and agglomerationhave been mitigated in this experiment to focus on what impact the polymer and polymer–nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5–15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23639183</pmid><doi>10.1021/am4005623</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2013-06, Vol.5 (12), p.5486-5492
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1372081328
source MEDLINE; American Chemical Society Journals
subjects Colloids - chemistry
Electricity
Electrodes
Microscopy, Electron, Transmission
Nanocomposites - chemistry
Nanocomposites - ultrastructure
Polymers - chemistry
Silicon Dioxide - chemistry
title Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20Breakdown%20in%20Silica%E2%80%93Amorphous%20Polymer%20Nanocomposite%20Films:%20The%20Role%20of%20the%20Polymer%20Matrix&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Grabowski,%20Christopher%20A&rft.date=2013-06-26&rft.volume=5&rft.issue=12&rft.spage=5486&rft.epage=5492&rft.pages=5486-5492&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am4005623&rft_dat=%3Cproquest_cross%3E1372081328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372081328&rft_id=info:pmid/23639183&rfr_iscdi=true