Electrochromic and Colorimetric Properties of Nickel(II) Oxide Thin Films Prepared by Aerosol-Assisted Chemical Vapor Deposition

Aerosol-assisted chemical vapor deposition (AACVD) was used for the first time in the preparation of thin-film electrochromic nickel(II) oxide (NiO). The as-deposited films were cubic NiO, with an octahedral-like grain structure, and an optical band gap that decreased from 3.61 to 3.48 eV on increas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2013-06, Vol.5 (12), p.5675-5682
Hauptverfasser: Sialvi, Muhammad Z, Mortimer, Roger J, Wilcox, Geoffrey D, Teridi, Asri Mat, Varley, Thomas S, Wijayantha, K. G. Upul, Kirk, Caroline A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aerosol-assisted chemical vapor deposition (AACVD) was used for the first time in the preparation of thin-film electrochromic nickel(II) oxide (NiO). The as-deposited films were cubic NiO, with an octahedral-like grain structure, and an optical band gap that decreased from 3.61 to 3.48 eV on increase in film thickness (in the range 500–1000 nm). On oxidative voltammetric cycling in aqueous KOH (0.1 mol dm–3) electrolyte, the morphology gradually changed to an open porous NiO structure. The electrochromic properties of the films were investigated as a function of film thickness, following 50, 100, and 500 conditioning oxidative voltammetric cycles in aqueous KOH (0.1 mol dm–3). Light modulation of the films increased with the number of conditioning cycles. The maximum coloration efficiency (CE) for the NiO (transmissive light green, the “bleached” state) to NiOOH (deep brown, the colored state) electrochromic process was found to be 56.3 cm2 C–1 (at 450 nm) for films prepared by AACVD for 15 min followed by 100 “bleached”-to-colored conditioning oxidative voltammetric cycles. Electrochromic response times were
ISSN:1944-8244
1944-8252
DOI:10.1021/am401025v