Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation
•The localization of the nanocrystals in the blend was controlled as a function of their modification.•The location and affinity of the fillers play a vital role on the composite properties.•“Taylor-made” properties were obtained by choosing the processing and chemical modification.•The nanomaterial...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2013-07, Vol.96 (2), p.621-627 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 627 |
---|---|
container_issue | 2 |
container_start_page | 621 |
container_title | Carbohydrate polymers |
container_volume | 96 |
creator | Bitinis, Natacha Fortunati, Elena Verdejo, Raquel Bras, Julien Kenny, Jose Maria Torre, Luigi López-Manchado, Miguel Angel |
description | •The localization of the nanocrystals in the blend was controlled as a function of their modification.•The location and affinity of the fillers play a vital role on the composite properties.•“Taylor-made” properties were obtained by choosing the processing and chemical modification.•The nanomaterials completely disintegrated after one month in compost.
The crystallization, mechanical and biodegradation properties of poly(lactic acid)/natural rubber/cellulose nanocrystals (CNC) bionanocomposites were evaluated. Three types of CNC were used in this study, one unmodified (CNC), long alkyl chain grafted CNC (C18-g-CNC) and PLA grafted CNC (PLA-g-CNC). The CNC modifications determined the affinity of the nanocrystals toward the polymers and reflected on the ultimate properties. Interestingly, PLA-g-CNC acted as a nucleating agent for the PLA matrix in the bio-based PLA/NR blend. Good mechanical properties were reported, as the bionanocomposites maintained a high elongation at break for a concentration up to 3wt.% of cellulose nanocrystals. Moreover, the disintegration study confirmed that the materials completely disintegrated after one month in compost. |
doi_str_mv | 10.1016/j.carbpol.2013.03.091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1369233009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014486171300341X</els_id><sourcerecordid>1369233009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-bd7fc4b16e3850ee9647f24ef06e1f9d8f4d38f26ba906bd02a5091c2c6fdfca3</originalsourceid><addsrcrecordid>eNqFkVGL1DAQx4Mo3t7pR1D7IpwP7SZNm7b3InKcunDggt5zmKQTzZJtapIe7Lc36676aBgIYX4z_8x_CHnFaMUoE-tdpSGo2buqpoxXNMfAnpAV67uhZLxpnpIVZU1T9oJ1F-Qyxh3NRzD6nFzUvBO9oP2K_Nh6d7h2oJPVBWg7vltPkJYArgiLUhjWGp1bnI9YTDB5HQ4x5aSy_vfT72cfbcJYFVsIqdhsbopt8DOGZDEW-AhugZThF-SZARfx5fm-Ig8f777dfi7vv3za3H64L3XL61SqsTO6UUwg71uKOIimM3WDhgpkZhh704y8N7VQMFChRlpDmwfXtRZmNBr4Fbk-9Z2D_7lgTHJv43EGmNAvUTIuhppzSoeMtidUBx9jQCPnYPcQDpJReTRZ7uTZZHk0WdIcA8t1r88Si9rj-Lfqj6sZeHsGIGpwJsCkbfzHdU1Xt7zN3JsTZ8BL-B4y8_A1K4m8qJaz7ij1_kRgtuzRYpBRW5w0jjagTnL09j-f_QUOxqiR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369233009</pqid></control><display><type>article</type><title>Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bitinis, Natacha ; Fortunati, Elena ; Verdejo, Raquel ; Bras, Julien ; Kenny, Jose Maria ; Torre, Luigi ; López-Manchado, Miguel Angel</creator><creatorcontrib>Bitinis, Natacha ; Fortunati, Elena ; Verdejo, Raquel ; Bras, Julien ; Kenny, Jose Maria ; Torre, Luigi ; López-Manchado, Miguel Angel</creatorcontrib><description>•The localization of the nanocrystals in the blend was controlled as a function of their modification.•The location and affinity of the fillers play a vital role on the composite properties.•“Taylor-made” properties were obtained by choosing the processing and chemical modification.•The nanomaterials completely disintegrated after one month in compost.
The crystallization, mechanical and biodegradation properties of poly(lactic acid)/natural rubber/cellulose nanocrystals (CNC) bionanocomposites were evaluated. Three types of CNC were used in this study, one unmodified (CNC), long alkyl chain grafted CNC (C18-g-CNC) and PLA grafted CNC (PLA-g-CNC). The CNC modifications determined the affinity of the nanocrystals toward the polymers and reflected on the ultimate properties. Interestingly, PLA-g-CNC acted as a nucleating agent for the PLA matrix in the bio-based PLA/NR blend. Good mechanical properties were reported, as the bionanocomposites maintained a high elongation at break for a concentration up to 3wt.% of cellulose nanocrystals. Moreover, the disintegration study confirmed that the materials completely disintegrated after one month in compost.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2013.03.091</identifier><identifier>PMID: 23768608</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Biodegradation ; Biodegradation, Environmental ; Bionanocomposite ; cellulose ; Cellulose - chemistry ; Cellulose nanocrystal ; Composites ; composts ; Crystallization ; Exact sciences and technology ; Forms of application and semi-finished materials ; Lactic Acid - chemistry ; Mechanical properties ; nanocrystals ; Nanoparticles - chemistry ; Poly(lactic acid) ; Polyesters ; polylactic acid ; Polymer industry, paints, wood ; Polymers - chemistry ; rubber ; Rubber - chemistry ; Technology of polymers ; Tensile Strength</subject><ispartof>Carbohydrate polymers, 2013-07, Vol.96 (2), p.621-627</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-bd7fc4b16e3850ee9647f24ef06e1f9d8f4d38f26ba906bd02a5091c2c6fdfca3</citedby><cites>FETCH-LOGICAL-c532t-bd7fc4b16e3850ee9647f24ef06e1f9d8f4d38f26ba906bd02a5091c2c6fdfca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2013.03.091$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27472535$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23768608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bitinis, Natacha</creatorcontrib><creatorcontrib>Fortunati, Elena</creatorcontrib><creatorcontrib>Verdejo, Raquel</creatorcontrib><creatorcontrib>Bras, Julien</creatorcontrib><creatorcontrib>Kenny, Jose Maria</creatorcontrib><creatorcontrib>Torre, Luigi</creatorcontrib><creatorcontrib>López-Manchado, Miguel Angel</creatorcontrib><title>Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•The localization of the nanocrystals in the blend was controlled as a function of their modification.•The location and affinity of the fillers play a vital role on the composite properties.•“Taylor-made” properties were obtained by choosing the processing and chemical modification.•The nanomaterials completely disintegrated after one month in compost.
The crystallization, mechanical and biodegradation properties of poly(lactic acid)/natural rubber/cellulose nanocrystals (CNC) bionanocomposites were evaluated. Three types of CNC were used in this study, one unmodified (CNC), long alkyl chain grafted CNC (C18-g-CNC) and PLA grafted CNC (PLA-g-CNC). The CNC modifications determined the affinity of the nanocrystals toward the polymers and reflected on the ultimate properties. Interestingly, PLA-g-CNC acted as a nucleating agent for the PLA matrix in the bio-based PLA/NR blend. Good mechanical properties were reported, as the bionanocomposites maintained a high elongation at break for a concentration up to 3wt.% of cellulose nanocrystals. Moreover, the disintegration study confirmed that the materials completely disintegrated after one month in compost.</description><subject>Applied sciences</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Bionanocomposite</subject><subject>cellulose</subject><subject>Cellulose - chemistry</subject><subject>Cellulose nanocrystal</subject><subject>Composites</subject><subject>composts</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Lactic Acid - chemistry</subject><subject>Mechanical properties</subject><subject>nanocrystals</subject><subject>Nanoparticles - chemistry</subject><subject>Poly(lactic acid)</subject><subject>Polyesters</subject><subject>polylactic acid</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers - chemistry</subject><subject>rubber</subject><subject>Rubber - chemistry</subject><subject>Technology of polymers</subject><subject>Tensile Strength</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkVGL1DAQx4Mo3t7pR1D7IpwP7SZNm7b3InKcunDggt5zmKQTzZJtapIe7Lc36676aBgIYX4z_8x_CHnFaMUoE-tdpSGo2buqpoxXNMfAnpAV67uhZLxpnpIVZU1T9oJ1F-Qyxh3NRzD6nFzUvBO9oP2K_Nh6d7h2oJPVBWg7vltPkJYArgiLUhjWGp1bnI9YTDB5HQ4x5aSy_vfT72cfbcJYFVsIqdhsbopt8DOGZDEW-AhugZThF-SZARfx5fm-Ig8f777dfi7vv3za3H64L3XL61SqsTO6UUwg71uKOIimM3WDhgpkZhh704y8N7VQMFChRlpDmwfXtRZmNBr4Fbk-9Z2D_7lgTHJv43EGmNAvUTIuhppzSoeMtidUBx9jQCPnYPcQDpJReTRZ7uTZZHk0WdIcA8t1r88Si9rj-Lfqj6sZeHsGIGpwJsCkbfzHdU1Xt7zN3JsTZ8BL-B4y8_A1K4m8qJaz7ij1_kRgtuzRYpBRW5w0jjagTnL09j-f_QUOxqiR</recordid><startdate>20130725</startdate><enddate>20130725</enddate><creator>Bitinis, Natacha</creator><creator>Fortunati, Elena</creator><creator>Verdejo, Raquel</creator><creator>Bras, Julien</creator><creator>Kenny, Jose Maria</creator><creator>Torre, Luigi</creator><creator>López-Manchado, Miguel Angel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130725</creationdate><title>Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation</title><author>Bitinis, Natacha ; Fortunati, Elena ; Verdejo, Raquel ; Bras, Julien ; Kenny, Jose Maria ; Torre, Luigi ; López-Manchado, Miguel Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-bd7fc4b16e3850ee9647f24ef06e1f9d8f4d38f26ba906bd02a5091c2c6fdfca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Bionanocomposite</topic><topic>cellulose</topic><topic>Cellulose - chemistry</topic><topic>Cellulose nanocrystal</topic><topic>Composites</topic><topic>composts</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Lactic Acid - chemistry</topic><topic>Mechanical properties</topic><topic>nanocrystals</topic><topic>Nanoparticles - chemistry</topic><topic>Poly(lactic acid)</topic><topic>Polyesters</topic><topic>polylactic acid</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers - chemistry</topic><topic>rubber</topic><topic>Rubber - chemistry</topic><topic>Technology of polymers</topic><topic>Tensile Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bitinis, Natacha</creatorcontrib><creatorcontrib>Fortunati, Elena</creatorcontrib><creatorcontrib>Verdejo, Raquel</creatorcontrib><creatorcontrib>Bras, Julien</creatorcontrib><creatorcontrib>Kenny, Jose Maria</creatorcontrib><creatorcontrib>Torre, Luigi</creatorcontrib><creatorcontrib>López-Manchado, Miguel Angel</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bitinis, Natacha</au><au>Fortunati, Elena</au><au>Verdejo, Raquel</au><au>Bras, Julien</au><au>Kenny, Jose Maria</au><au>Torre, Luigi</au><au>López-Manchado, Miguel Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2013-07-25</date><risdate>2013</risdate><volume>96</volume><issue>2</issue><spage>621</spage><epage>627</epage><pages>621-627</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>•The localization of the nanocrystals in the blend was controlled as a function of their modification.•The location and affinity of the fillers play a vital role on the composite properties.•“Taylor-made” properties were obtained by choosing the processing and chemical modification.•The nanomaterials completely disintegrated after one month in compost.
The crystallization, mechanical and biodegradation properties of poly(lactic acid)/natural rubber/cellulose nanocrystals (CNC) bionanocomposites were evaluated. Three types of CNC were used in this study, one unmodified (CNC), long alkyl chain grafted CNC (C18-g-CNC) and PLA grafted CNC (PLA-g-CNC). The CNC modifications determined the affinity of the nanocrystals toward the polymers and reflected on the ultimate properties. Interestingly, PLA-g-CNC acted as a nucleating agent for the PLA matrix in the bio-based PLA/NR blend. Good mechanical properties were reported, as the bionanocomposites maintained a high elongation at break for a concentration up to 3wt.% of cellulose nanocrystals. Moreover, the disintegration study confirmed that the materials completely disintegrated after one month in compost.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23768608</pmid><doi>10.1016/j.carbpol.2013.03.091</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2013-07, Vol.96 (2), p.621-627 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_1369233009 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Biodegradation Biodegradation, Environmental Bionanocomposite cellulose Cellulose - chemistry Cellulose nanocrystal Composites composts Crystallization Exact sciences and technology Forms of application and semi-finished materials Lactic Acid - chemistry Mechanical properties nanocrystals Nanoparticles - chemistry Poly(lactic acid) Polyesters polylactic acid Polymer industry, paints, wood Polymers - chemistry rubber Rubber - chemistry Technology of polymers Tensile Strength |
title | Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A17%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(lactic%20acid)/natural%20rubber/cellulose%20nanocrystal%20bionanocomposites.%20Part%20II:%20Properties%20evaluation&rft.jtitle=Carbohydrate%20polymers&rft.au=Bitinis,%20Natacha&rft.date=2013-07-25&rft.volume=96&rft.issue=2&rft.spage=621&rft.epage=627&rft.pages=621-627&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2013.03.091&rft_dat=%3Cproquest_cross%3E1369233009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369233009&rft_id=info:pmid/23768608&rft_els_id=S014486171300341X&rfr_iscdi=true |