Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls

Apoplastic targeting of secondary metabolites compatible with monolignol polymerization may provide new avenues for designing lignins that are less inhibitory toward fiber fermentation. To identify suitable monolignol substitutes, primary maize cell walls were artificially lignified with normal mono...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2012-05, Vol.60 (20), p.5152-5160
Hauptverfasser: Grabber, John H, Ress, Dino, Ralph, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5160
container_issue 20
container_start_page 5152
container_title Journal of agricultural and food chemistry
container_volume 60
creator Grabber, John H
Ress, Dino
Ralph, John
description Apoplastic targeting of secondary metabolites compatible with monolignol polymerization may provide new avenues for designing lignins that are less inhibitory toward fiber fermentation. To identify suitable monolignol substitutes, primary maize cell walls were artificially lignified with normal monolignols plus various epicatechin, quercetin glycoside, and gallate derivatives added as 0 or 45% by weight of the precursor mixture. The flavonoids and gallates had variable effects on peroxidase activity, but all dropped lignification pH. Epigallocatechin gallate, epicatechin gallate, epicatechin vanillate, epigallocatechin, galloylhyperin, and pentagalloylglucose formed wall-bound lignin at moderate to high concentrations, and their incorporation increased 48 h in vitro ruminal fiber fermentability by 20–33% relative to lignified controls. By contrast, ethyl gallate and corilagin severely depressed lignification and increased 48 h fermentability by about 50%. The results suggest several flavonoid and gallate derivatives are promising lignin bioengineering targets for improving the inherent fermentability of nonpretreated cell walls.
doi_str_mv 10.1021/jf203986a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1368589415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1015755866</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-300049fa924bb3fd5d5aaee925114e5dd63cebdb4d16db48583530c493b9bf1b3</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhiMEYsvCgRcAX5BA2oDt2GnCDcpuqVRAiF1xjCbOuOsqcYqdLCrPxEMyVcruBYmLLc9888_vmSR5KvhrwaV4s7WSZ2WRw71kJrTkqRaiuJ_MOCXTQufiJHkU45ZzXug5f5icSKnmmp6z5PeqQT84u3d-wz7jT7Z2G-88e-969BvnEcMhcwlhg0N8y1bdDszAesvOd87AgOba-TP2dcRgcKDCZbs3fXQNnjHwDVtC2xLFPpDODQzuBiPrPRuucepkDyKOIgf4AkNHbqYAtfgE7heyBbYt-0468XHywEIb8cnxPk2uLs4vFx_T9ZflavFunYLickgz-pkqLZRS1XVmG91oAMRS0lgU6qbJM4N1U6tG5HQWush0xo0qs7qsraiz0-TlpLsL_Y8R41B1LhqyAR77MVYiy6moVEL_H-VCz7Uu8pzQVxNqQh9jQFvtgusg7AmqDnusbvdI7LOj7Fh32NySfxdHwIsjANFAawN44-Idp0uZcSWJez5xFvoKNoGYq2-STJHIXHGt75TAxGrbj8HTaP9h6Q8H5bvd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015755866</pqid></control><display><type>article</type><title>Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls</title><source>ACS Publications</source><source>MEDLINE</source><creator>Grabber, John H ; Ress, Dino ; Ralph, John</creator><creatorcontrib>Grabber, John H ; Ress, Dino ; Ralph, John</creatorcontrib><description>Apoplastic targeting of secondary metabolites compatible with monolignol polymerization may provide new avenues for designing lignins that are less inhibitory toward fiber fermentation. To identify suitable monolignol substitutes, primary maize cell walls were artificially lignified with normal monolignols plus various epicatechin, quercetin glycoside, and gallate derivatives added as 0 or 45% by weight of the precursor mixture. The flavonoids and gallates had variable effects on peroxidase activity, but all dropped lignification pH. Epigallocatechin gallate, epicatechin gallate, epicatechin vanillate, epigallocatechin, galloylhyperin, and pentagalloylglucose formed wall-bound lignin at moderate to high concentrations, and their incorporation increased 48 h in vitro ruminal fiber fermentability by 20–33% relative to lignified controls. By contrast, ethyl gallate and corilagin severely depressed lignification and increased 48 h fermentability by about 50%. The results suggest several flavonoid and gallate derivatives are promising lignin bioengineering targets for improving the inherent fermentability of nonpretreated cell walls.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf203986a</identifier><identifier>PMID: 22475000</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>analogs &amp; derivatives ; Animals ; Bacteria ; Bacteria - metabolism ; Bioengineering ; Biofuel production ; Biological and medical sciences ; Biotechnology ; Catechin ; Catechin - analogs &amp; derivatives ; Catechin - metabolism ; Cell Wall ; Cell Wall - metabolism ; cell walls ; Cereal and baking product industries ; corn ; Energy ; epicatechin ; epigallocatechin ; Fermentation ; Food industries ; Fundamental and applied biological sciences. Psychology ; Gallic Acid ; Gallic Acid - analogs &amp; derivatives ; Gallic Acid - metabolism ; Hydrogen-Ion Concentration ; Industrial applications and implications. Economical aspects ; lignification ; lignin ; Lignin - metabolism ; metabolism ; microbiology ; Peroxidase ; Peroxidase - metabolism ; Phenols ; Phenols - metabolism ; Phenylpropionates ; Phenylpropionates - metabolism ; quercetin ; Quercetin - metabolism ; Rumen ; Rumen - microbiology ; secondary metabolites ; Zea mays ; Zea mays - metabolism</subject><ispartof>Journal of agricultural and food chemistry, 2012-05, Vol.60 (20), p.5152-5160</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-300049fa924bb3fd5d5aaee925114e5dd63cebdb4d16db48583530c493b9bf1b3</citedby><cites>FETCH-LOGICAL-a402t-300049fa924bb3fd5d5aaee925114e5dd63cebdb4d16db48583530c493b9bf1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jf203986a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jf203986a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25923042$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22475000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grabber, John H</creatorcontrib><creatorcontrib>Ress, Dino</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><title>Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Apoplastic targeting of secondary metabolites compatible with monolignol polymerization may provide new avenues for designing lignins that are less inhibitory toward fiber fermentation. To identify suitable monolignol substitutes, primary maize cell walls were artificially lignified with normal monolignols plus various epicatechin, quercetin glycoside, and gallate derivatives added as 0 or 45% by weight of the precursor mixture. The flavonoids and gallates had variable effects on peroxidase activity, but all dropped lignification pH. Epigallocatechin gallate, epicatechin gallate, epicatechin vanillate, epigallocatechin, galloylhyperin, and pentagalloylglucose formed wall-bound lignin at moderate to high concentrations, and their incorporation increased 48 h in vitro ruminal fiber fermentability by 20–33% relative to lignified controls. By contrast, ethyl gallate and corilagin severely depressed lignification and increased 48 h fermentability by about 50%. The results suggest several flavonoid and gallate derivatives are promising lignin bioengineering targets for improving the inherent fermentability of nonpretreated cell walls.</description><subject>analogs &amp; derivatives</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Bioengineering</subject><subject>Biofuel production</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Catechin</subject><subject>Catechin - analogs &amp; derivatives</subject><subject>Catechin - metabolism</subject><subject>Cell Wall</subject><subject>Cell Wall - metabolism</subject><subject>cell walls</subject><subject>Cereal and baking product industries</subject><subject>corn</subject><subject>Energy</subject><subject>epicatechin</subject><subject>epigallocatechin</subject><subject>Fermentation</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gallic Acid</subject><subject>Gallic Acid - analogs &amp; derivatives</subject><subject>Gallic Acid - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>lignification</subject><subject>lignin</subject><subject>Lignin - metabolism</subject><subject>metabolism</subject><subject>microbiology</subject><subject>Peroxidase</subject><subject>Peroxidase - metabolism</subject><subject>Phenols</subject><subject>Phenols - metabolism</subject><subject>Phenylpropionates</subject><subject>Phenylpropionates - metabolism</subject><subject>quercetin</subject><subject>Quercetin - metabolism</subject><subject>Rumen</subject><subject>Rumen - microbiology</subject><subject>secondary metabolites</subject><subject>Zea mays</subject><subject>Zea mays - metabolism</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGO0zAQhiMEYsvCgRcAX5BA2oDt2GnCDcpuqVRAiF1xjCbOuOsqcYqdLCrPxEMyVcruBYmLLc9888_vmSR5KvhrwaV4s7WSZ2WRw71kJrTkqRaiuJ_MOCXTQufiJHkU45ZzXug5f5icSKnmmp6z5PeqQT84u3d-wz7jT7Z2G-88e-969BvnEcMhcwlhg0N8y1bdDszAesvOd87AgOba-TP2dcRgcKDCZbs3fXQNnjHwDVtC2xLFPpDODQzuBiPrPRuucepkDyKOIgf4AkNHbqYAtfgE7heyBbYt-0468XHywEIb8cnxPk2uLs4vFx_T9ZflavFunYLickgz-pkqLZRS1XVmG91oAMRS0lgU6qbJM4N1U6tG5HQWush0xo0qs7qsraiz0-TlpLsL_Y8R41B1LhqyAR77MVYiy6moVEL_H-VCz7Uu8pzQVxNqQh9jQFvtgusg7AmqDnusbvdI7LOj7Fh32NySfxdHwIsjANFAawN44-Idp0uZcSWJez5xFvoKNoGYq2-STJHIXHGt75TAxGrbj8HTaP9h6Q8H5bvd</recordid><startdate>20120523</startdate><enddate>20120523</enddate><creator>Grabber, John H</creator><creator>Ress, Dino</creator><creator>Ralph, John</creator><general>American Chemical Society</general><general>American Chemical Society, Books and Journals Division</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20120523</creationdate><title>Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls</title><author>Grabber, John H ; Ress, Dino ; Ralph, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-300049fa924bb3fd5d5aaee925114e5dd63cebdb4d16db48583530c493b9bf1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>analogs &amp; derivatives</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Bioengineering</topic><topic>Biofuel production</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Catechin</topic><topic>Catechin - analogs &amp; derivatives</topic><topic>Catechin - metabolism</topic><topic>Cell Wall</topic><topic>Cell Wall - metabolism</topic><topic>cell walls</topic><topic>Cereal and baking product industries</topic><topic>corn</topic><topic>Energy</topic><topic>epicatechin</topic><topic>epigallocatechin</topic><topic>Fermentation</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gallic Acid</topic><topic>Gallic Acid - analogs &amp; derivatives</topic><topic>Gallic Acid - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>lignification</topic><topic>lignin</topic><topic>Lignin - metabolism</topic><topic>metabolism</topic><topic>microbiology</topic><topic>Peroxidase</topic><topic>Peroxidase - metabolism</topic><topic>Phenols</topic><topic>Phenols - metabolism</topic><topic>Phenylpropionates</topic><topic>Phenylpropionates - metabolism</topic><topic>quercetin</topic><topic>Quercetin - metabolism</topic><topic>Rumen</topic><topic>Rumen - microbiology</topic><topic>secondary metabolites</topic><topic>Zea mays</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabber, John H</creatorcontrib><creatorcontrib>Ress, Dino</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabber, John H</au><au>Ress, Dino</au><au>Ralph, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2012-05-23</date><risdate>2012</risdate><volume>60</volume><issue>20</issue><spage>5152</spage><epage>5160</epage><pages>5152-5160</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Apoplastic targeting of secondary metabolites compatible with monolignol polymerization may provide new avenues for designing lignins that are less inhibitory toward fiber fermentation. To identify suitable monolignol substitutes, primary maize cell walls were artificially lignified with normal monolignols plus various epicatechin, quercetin glycoside, and gallate derivatives added as 0 or 45% by weight of the precursor mixture. The flavonoids and gallates had variable effects on peroxidase activity, but all dropped lignification pH. Epigallocatechin gallate, epicatechin gallate, epicatechin vanillate, epigallocatechin, galloylhyperin, and pentagalloylglucose formed wall-bound lignin at moderate to high concentrations, and their incorporation increased 48 h in vitro ruminal fiber fermentability by 20–33% relative to lignified controls. By contrast, ethyl gallate and corilagin severely depressed lignification and increased 48 h fermentability by about 50%. The results suggest several flavonoid and gallate derivatives are promising lignin bioengineering targets for improving the inherent fermentability of nonpretreated cell walls.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22475000</pmid><doi>10.1021/jf203986a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2012-05, Vol.60 (20), p.5152-5160
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_1368589415
source ACS Publications; MEDLINE
subjects analogs & derivatives
Animals
Bacteria
Bacteria - metabolism
Bioengineering
Biofuel production
Biological and medical sciences
Biotechnology
Catechin
Catechin - analogs & derivatives
Catechin - metabolism
Cell Wall
Cell Wall - metabolism
cell walls
Cereal and baking product industries
corn
Energy
epicatechin
epigallocatechin
Fermentation
Food industries
Fundamental and applied biological sciences. Psychology
Gallic Acid
Gallic Acid - analogs & derivatives
Gallic Acid - metabolism
Hydrogen-Ion Concentration
Industrial applications and implications. Economical aspects
lignification
lignin
Lignin - metabolism
metabolism
microbiology
Peroxidase
Peroxidase - metabolism
Phenols
Phenols - metabolism
Phenylpropionates
Phenylpropionates - metabolism
quercetin
Quercetin - metabolism
Rumen
Rumen - microbiology
secondary metabolites
Zea mays
Zea mays - metabolism
title Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20New%20Lignin%20Bioengineering%20Targets:%20Impact%20of%20Epicatechin,%20Quercetin%20Glycoside,%20and%20Gallate%20Derivatives%20on%20the%20Lignification%20and%20Fermentation%20of%20Maize%20Cell%20Walls&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Grabber,%20John%20H&rft.date=2012-05-23&rft.volume=60&rft.issue=20&rft.spage=5152&rft.epage=5160&rft.pages=5152-5160&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf203986a&rft_dat=%3Cproquest_cross%3E1015755866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015755866&rft_id=info:pmid/22475000&rfr_iscdi=true