Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls
Apoplastic targeting of secondary metabolites compatible with monolignol polymerization may provide new avenues for designing lignins that are less inhibitory toward fiber fermentation. To identify suitable monolignol substitutes, primary maize cell walls were artificially lignified with normal mono...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2012-05, Vol.60 (20), p.5152-5160 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5160 |
---|---|
container_issue | 20 |
container_start_page | 5152 |
container_title | Journal of agricultural and food chemistry |
container_volume | 60 |
creator | Grabber, John H Ress, Dino Ralph, John |
description | Apoplastic targeting of secondary metabolites compatible with monolignol polymerization may provide new avenues for designing lignins that are less inhibitory toward fiber fermentation. To identify suitable monolignol substitutes, primary maize cell walls were artificially lignified with normal monolignols plus various epicatechin, quercetin glycoside, and gallate derivatives added as 0 or 45% by weight of the precursor mixture. The flavonoids and gallates had variable effects on peroxidase activity, but all dropped lignification pH. Epigallocatechin gallate, epicatechin gallate, epicatechin vanillate, epigallocatechin, galloylhyperin, and pentagalloylglucose formed wall-bound lignin at moderate to high concentrations, and their incorporation increased 48 h in vitro ruminal fiber fermentability by 20–33% relative to lignified controls. By contrast, ethyl gallate and corilagin severely depressed lignification and increased 48 h fermentability by about 50%. The results suggest several flavonoid and gallate derivatives are promising lignin bioengineering targets for improving the inherent fermentability of nonpretreated cell walls. |
doi_str_mv | 10.1021/jf203986a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1368589415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1015755866</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-300049fa924bb3fd5d5aaee925114e5dd63cebdb4d16db48583530c493b9bf1b3</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhiMEYsvCgRcAX5BA2oDt2GnCDcpuqVRAiF1xjCbOuOsqcYqdLCrPxEMyVcruBYmLLc9888_vmSR5KvhrwaV4s7WSZ2WRw71kJrTkqRaiuJ_MOCXTQufiJHkU45ZzXug5f5icSKnmmp6z5PeqQT84u3d-wz7jT7Z2G-88e-969BvnEcMhcwlhg0N8y1bdDszAesvOd87AgOba-TP2dcRgcKDCZbs3fXQNnjHwDVtC2xLFPpDODQzuBiPrPRuucepkDyKOIgf4AkNHbqYAtfgE7heyBbYt-0468XHywEIb8cnxPk2uLs4vFx_T9ZflavFunYLickgz-pkqLZRS1XVmG91oAMRS0lgU6qbJM4N1U6tG5HQWush0xo0qs7qsraiz0-TlpLsL_Y8R41B1LhqyAR77MVYiy6moVEL_H-VCz7Uu8pzQVxNqQh9jQFvtgusg7AmqDnusbvdI7LOj7Fh32NySfxdHwIsjANFAawN44-Idp0uZcSWJez5xFvoKNoGYq2-STJHIXHGt75TAxGrbj8HTaP9h6Q8H5bvd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015755866</pqid></control><display><type>article</type><title>Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls</title><source>ACS Publications</source><source>MEDLINE</source><creator>Grabber, John H ; Ress, Dino ; Ralph, John</creator><creatorcontrib>Grabber, John H ; Ress, Dino ; Ralph, John</creatorcontrib><description>Apoplastic targeting of secondary metabolites compatible with monolignol polymerization may provide new avenues for designing lignins that are less inhibitory toward fiber fermentation. To identify suitable monolignol substitutes, primary maize cell walls were artificially lignified with normal monolignols plus various epicatechin, quercetin glycoside, and gallate derivatives added as 0 or 45% by weight of the precursor mixture. The flavonoids and gallates had variable effects on peroxidase activity, but all dropped lignification pH. Epigallocatechin gallate, epicatechin gallate, epicatechin vanillate, epigallocatechin, galloylhyperin, and pentagalloylglucose formed wall-bound lignin at moderate to high concentrations, and their incorporation increased 48 h in vitro ruminal fiber fermentability by 20–33% relative to lignified controls. By contrast, ethyl gallate and corilagin severely depressed lignification and increased 48 h fermentability by about 50%. The results suggest several flavonoid and gallate derivatives are promising lignin bioengineering targets for improving the inherent fermentability of nonpretreated cell walls.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf203986a</identifier><identifier>PMID: 22475000</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>analogs & derivatives ; Animals ; Bacteria ; Bacteria - metabolism ; Bioengineering ; Biofuel production ; Biological and medical sciences ; Biotechnology ; Catechin ; Catechin - analogs & derivatives ; Catechin - metabolism ; Cell Wall ; Cell Wall - metabolism ; cell walls ; Cereal and baking product industries ; corn ; Energy ; epicatechin ; epigallocatechin ; Fermentation ; Food industries ; Fundamental and applied biological sciences. Psychology ; Gallic Acid ; Gallic Acid - analogs & derivatives ; Gallic Acid - metabolism ; Hydrogen-Ion Concentration ; Industrial applications and implications. Economical aspects ; lignification ; lignin ; Lignin - metabolism ; metabolism ; microbiology ; Peroxidase ; Peroxidase - metabolism ; Phenols ; Phenols - metabolism ; Phenylpropionates ; Phenylpropionates - metabolism ; quercetin ; Quercetin - metabolism ; Rumen ; Rumen - microbiology ; secondary metabolites ; Zea mays ; Zea mays - metabolism</subject><ispartof>Journal of agricultural and food chemistry, 2012-05, Vol.60 (20), p.5152-5160</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-300049fa924bb3fd5d5aaee925114e5dd63cebdb4d16db48583530c493b9bf1b3</citedby><cites>FETCH-LOGICAL-a402t-300049fa924bb3fd5d5aaee925114e5dd63cebdb4d16db48583530c493b9bf1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jf203986a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jf203986a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25923042$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22475000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grabber, John H</creatorcontrib><creatorcontrib>Ress, Dino</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><title>Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Apoplastic targeting of secondary metabolites compatible with monolignol polymerization may provide new avenues for designing lignins that are less inhibitory toward fiber fermentation. To identify suitable monolignol substitutes, primary maize cell walls were artificially lignified with normal monolignols plus various epicatechin, quercetin glycoside, and gallate derivatives added as 0 or 45% by weight of the precursor mixture. The flavonoids and gallates had variable effects on peroxidase activity, but all dropped lignification pH. Epigallocatechin gallate, epicatechin gallate, epicatechin vanillate, epigallocatechin, galloylhyperin, and pentagalloylglucose formed wall-bound lignin at moderate to high concentrations, and their incorporation increased 48 h in vitro ruminal fiber fermentability by 20–33% relative to lignified controls. By contrast, ethyl gallate and corilagin severely depressed lignification and increased 48 h fermentability by about 50%. The results suggest several flavonoid and gallate derivatives are promising lignin bioengineering targets for improving the inherent fermentability of nonpretreated cell walls.</description><subject>analogs & derivatives</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Bioengineering</subject><subject>Biofuel production</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Catechin</subject><subject>Catechin - analogs & derivatives</subject><subject>Catechin - metabolism</subject><subject>Cell Wall</subject><subject>Cell Wall - metabolism</subject><subject>cell walls</subject><subject>Cereal and baking product industries</subject><subject>corn</subject><subject>Energy</subject><subject>epicatechin</subject><subject>epigallocatechin</subject><subject>Fermentation</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gallic Acid</subject><subject>Gallic Acid - analogs & derivatives</subject><subject>Gallic Acid - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>lignification</subject><subject>lignin</subject><subject>Lignin - metabolism</subject><subject>metabolism</subject><subject>microbiology</subject><subject>Peroxidase</subject><subject>Peroxidase - metabolism</subject><subject>Phenols</subject><subject>Phenols - metabolism</subject><subject>Phenylpropionates</subject><subject>Phenylpropionates - metabolism</subject><subject>quercetin</subject><subject>Quercetin - metabolism</subject><subject>Rumen</subject><subject>Rumen - microbiology</subject><subject>secondary metabolites</subject><subject>Zea mays</subject><subject>Zea mays - metabolism</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGO0zAQhiMEYsvCgRcAX5BA2oDt2GnCDcpuqVRAiF1xjCbOuOsqcYqdLCrPxEMyVcruBYmLLc9888_vmSR5KvhrwaV4s7WSZ2WRw71kJrTkqRaiuJ_MOCXTQufiJHkU45ZzXug5f5icSKnmmp6z5PeqQT84u3d-wz7jT7Z2G-88e-969BvnEcMhcwlhg0N8y1bdDszAesvOd87AgOba-TP2dcRgcKDCZbs3fXQNnjHwDVtC2xLFPpDODQzuBiPrPRuucepkDyKOIgf4AkNHbqYAtfgE7heyBbYt-0468XHywEIb8cnxPk2uLs4vFx_T9ZflavFunYLickgz-pkqLZRS1XVmG91oAMRS0lgU6qbJM4N1U6tG5HQWush0xo0qs7qsraiz0-TlpLsL_Y8R41B1LhqyAR77MVYiy6moVEL_H-VCz7Uu8pzQVxNqQh9jQFvtgusg7AmqDnusbvdI7LOj7Fh32NySfxdHwIsjANFAawN44-Idp0uZcSWJez5xFvoKNoGYq2-STJHIXHGt75TAxGrbj8HTaP9h6Q8H5bvd</recordid><startdate>20120523</startdate><enddate>20120523</enddate><creator>Grabber, John H</creator><creator>Ress, Dino</creator><creator>Ralph, John</creator><general>American Chemical Society</general><general>American Chemical Society, Books and Journals Division</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20120523</creationdate><title>Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls</title><author>Grabber, John H ; Ress, Dino ; Ralph, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-300049fa924bb3fd5d5aaee925114e5dd63cebdb4d16db48583530c493b9bf1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>analogs & derivatives</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Bioengineering</topic><topic>Biofuel production</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Catechin</topic><topic>Catechin - analogs & derivatives</topic><topic>Catechin - metabolism</topic><topic>Cell Wall</topic><topic>Cell Wall - metabolism</topic><topic>cell walls</topic><topic>Cereal and baking product industries</topic><topic>corn</topic><topic>Energy</topic><topic>epicatechin</topic><topic>epigallocatechin</topic><topic>Fermentation</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gallic Acid</topic><topic>Gallic Acid - analogs & derivatives</topic><topic>Gallic Acid - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>lignification</topic><topic>lignin</topic><topic>Lignin - metabolism</topic><topic>metabolism</topic><topic>microbiology</topic><topic>Peroxidase</topic><topic>Peroxidase - metabolism</topic><topic>Phenols</topic><topic>Phenols - metabolism</topic><topic>Phenylpropionates</topic><topic>Phenylpropionates - metabolism</topic><topic>quercetin</topic><topic>Quercetin - metabolism</topic><topic>Rumen</topic><topic>Rumen - microbiology</topic><topic>secondary metabolites</topic><topic>Zea mays</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabber, John H</creatorcontrib><creatorcontrib>Ress, Dino</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabber, John H</au><au>Ress, Dino</au><au>Ralph, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2012-05-23</date><risdate>2012</risdate><volume>60</volume><issue>20</issue><spage>5152</spage><epage>5160</epage><pages>5152-5160</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Apoplastic targeting of secondary metabolites compatible with monolignol polymerization may provide new avenues for designing lignins that are less inhibitory toward fiber fermentation. To identify suitable monolignol substitutes, primary maize cell walls were artificially lignified with normal monolignols plus various epicatechin, quercetin glycoside, and gallate derivatives added as 0 or 45% by weight of the precursor mixture. The flavonoids and gallates had variable effects on peroxidase activity, but all dropped lignification pH. Epigallocatechin gallate, epicatechin gallate, epicatechin vanillate, epigallocatechin, galloylhyperin, and pentagalloylglucose formed wall-bound lignin at moderate to high concentrations, and their incorporation increased 48 h in vitro ruminal fiber fermentability by 20–33% relative to lignified controls. By contrast, ethyl gallate and corilagin severely depressed lignification and increased 48 h fermentability by about 50%. The results suggest several flavonoid and gallate derivatives are promising lignin bioengineering targets for improving the inherent fermentability of nonpretreated cell walls.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22475000</pmid><doi>10.1021/jf203986a</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8561 |
ispartof | Journal of agricultural and food chemistry, 2012-05, Vol.60 (20), p.5152-5160 |
issn | 0021-8561 1520-5118 |
language | eng |
recordid | cdi_proquest_miscellaneous_1368589415 |
source | ACS Publications; MEDLINE |
subjects | analogs & derivatives Animals Bacteria Bacteria - metabolism Bioengineering Biofuel production Biological and medical sciences Biotechnology Catechin Catechin - analogs & derivatives Catechin - metabolism Cell Wall Cell Wall - metabolism cell walls Cereal and baking product industries corn Energy epicatechin epigallocatechin Fermentation Food industries Fundamental and applied biological sciences. Psychology Gallic Acid Gallic Acid - analogs & derivatives Gallic Acid - metabolism Hydrogen-Ion Concentration Industrial applications and implications. Economical aspects lignification lignin Lignin - metabolism metabolism microbiology Peroxidase Peroxidase - metabolism Phenols Phenols - metabolism Phenylpropionates Phenylpropionates - metabolism quercetin Quercetin - metabolism Rumen Rumen - microbiology secondary metabolites Zea mays Zea mays - metabolism |
title | Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20New%20Lignin%20Bioengineering%20Targets:%20Impact%20of%20Epicatechin,%20Quercetin%20Glycoside,%20and%20Gallate%20Derivatives%20on%20the%20Lignification%20and%20Fermentation%20of%20Maize%20Cell%20Walls&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Grabber,%20John%20H&rft.date=2012-05-23&rft.volume=60&rft.issue=20&rft.spage=5152&rft.epage=5160&rft.pages=5152-5160&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf203986a&rft_dat=%3Cproquest_cross%3E1015755866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015755866&rft_id=info:pmid/22475000&rfr_iscdi=true |