Deciphering the kinetic mechanisms controlling selected plant ADP-glucose pyrophosphorylases

•AGPase, a rate-limiting enzyme in starch biosynthesis, is highly regulated.•With 3-PGA, each AGPase followed a Theorell-Chance Bi Bi mechanism.•3-PGA affects binding of substrates, kcat or both, depending on the isoform.•Without 3-PGA one isoform changes from a Theorell-Chance Bi Bi to a rapid equi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 2013-07, Vol.535 (2), p.215-226
Hauptverfasser: Boehlein, Susan K., Shaw, Janine R., Hwang, Seon K., Stewart, Jon D., Curtis Hannah, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 2
container_start_page 215
container_title Archives of biochemistry and biophysics
container_volume 535
creator Boehlein, Susan K.
Shaw, Janine R.
Hwang, Seon K.
Stewart, Jon D.
Curtis Hannah, L.
description •AGPase, a rate-limiting enzyme in starch biosynthesis, is highly regulated.•With 3-PGA, each AGPase followed a Theorell-Chance Bi Bi mechanism.•3-PGA affects binding of substrates, kcat or both, depending on the isoform.•Without 3-PGA one isoform changes from a Theorell-Chance Bi Bi to a rapid equilibrium mechanism.•An unusual phenomena of product activation is also seen in the absence of 3-PGA. ADP-Glc pyrophosphorylase (AGPase), a rate-limiting enzyme in starch biosynthesis, is controlled by thermostability and allosteric regulation. Previous studies suggested that redox affects turnover number and heat stability of AGPases. Here, we investigated how allostery and redox state affect kinetic mechanisms of the reduced, heat labile and the oxidized, heat stable potato tuber enzymes; the heat labile maize endosperm enzyme and a chimeric maize/potato heat stable enzyme that lacks the cysteine responsible for redox changes. With 3-PGA, all AGPases followed a Theorell-Chance Bi Bi mechanism with ATP binding first and ADP-Glc releasing last. 3-PGA increases the binding affinity for both substrates with little effect on velocity for the maize and MP isoforms. By contrast, 3-PGA increases the velocity and the affinity for G-1-P for the potato enzymes. Redox state does not affect kcat of the two potato isoforms. Without 3-PGA the oxidized potato enzyme exhibits a rapid equilibrium random Bi Bi mechanism with a dead end ternary complex. This fundamental change from rapid, ordered binding with little buildup of intermediates to a mechanism featuring relatively slow, random binding is unique to the oxidized potato tuber enzyme. Finally, ADP-Glc the physiologically relevant product of this enzyme has complex, isoform-specific effects on catalysis.
doi_str_mv 10.1016/j.abb.2013.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1367885200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003986113001070</els_id><sourcerecordid>1367885200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-49b9d4cf3bb8ec52119c58e0c46c6aabf8a51f2b689b7f6bb9f40df3e247414f3</originalsourceid><addsrcrecordid>eNp9kE2P0zAQhi0EYkvhB3CBHLkkjGPHScRptcuXtBJIsDcky3bGrUsSB0-K1H-Pqy4cOYxGGj3vq9HD2EsOFQeu3h4qY21VAxcVyApAPGIbDr0qQXTyMdtAPpV9p_gVe0Z0AOBcqvopu6qFAiG43LAft-jCsscU5l2x7rH4GWZcgysmdHszB5qocHFeUxzHM0I4oltxKJbRzGtxffu13I1HFwmL5ZTiso-UJ51GQ0jP2RNvRsIXD3vL7j-8_37zqbz78vHzzfVd6UTbrqXsbT9I54W1Hbqm5rx3TYfgpHLKGOs703BfW9X1tvXK2t5LGLzAWraSSy-27M2ld0nx1xFp1VMgh2N-EeORNBeq7bqmzjq2jF9QlyJRQq-XFCaTTpqDPkvVB52l6rNUDVLnSM68eqg_2gmHf4m_FjPw-gJ4E7XZpUD6_ltuaABq3ih5Jt5dCMwafgdMmlzA2eEQUvaphxj-88AfLBCSUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367885200</pqid></control><display><type>article</type><title>Deciphering the kinetic mechanisms controlling selected plant ADP-glucose pyrophosphorylases</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Boehlein, Susan K. ; Shaw, Janine R. ; Hwang, Seon K. ; Stewart, Jon D. ; Curtis Hannah, L.</creator><creatorcontrib>Boehlein, Susan K. ; Shaw, Janine R. ; Hwang, Seon K. ; Stewart, Jon D. ; Curtis Hannah, L.</creatorcontrib><description>•AGPase, a rate-limiting enzyme in starch biosynthesis, is highly regulated.•With 3-PGA, each AGPase followed a Theorell-Chance Bi Bi mechanism.•3-PGA affects binding of substrates, kcat or both, depending on the isoform.•Without 3-PGA one isoform changes from a Theorell-Chance Bi Bi to a rapid equilibrium mechanism.•An unusual phenomena of product activation is also seen in the absence of 3-PGA. ADP-Glc pyrophosphorylase (AGPase), a rate-limiting enzyme in starch biosynthesis, is controlled by thermostability and allosteric regulation. Previous studies suggested that redox affects turnover number and heat stability of AGPases. Here, we investigated how allostery and redox state affect kinetic mechanisms of the reduced, heat labile and the oxidized, heat stable potato tuber enzymes; the heat labile maize endosperm enzyme and a chimeric maize/potato heat stable enzyme that lacks the cysteine responsible for redox changes. With 3-PGA, all AGPases followed a Theorell-Chance Bi Bi mechanism with ATP binding first and ADP-Glc releasing last. 3-PGA increases the binding affinity for both substrates with little effect on velocity for the maize and MP isoforms. By contrast, 3-PGA increases the velocity and the affinity for G-1-P for the potato enzymes. Redox state does not affect kcat of the two potato isoforms. Without 3-PGA the oxidized potato enzyme exhibits a rapid equilibrium random Bi Bi mechanism with a dead end ternary complex. This fundamental change from rapid, ordered binding with little buildup of intermediates to a mechanism featuring relatively slow, random binding is unique to the oxidized potato tuber enzyme. Finally, ADP-Glc the physiologically relevant product of this enzyme has complex, isoform-specific effects on catalysis.</description><identifier>ISSN: 0003-9861</identifier><identifier>EISSN: 1096-0384</identifier><identifier>DOI: 10.1016/j.abb.2013.04.003</identifier><identifier>PMID: 23603314</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adenosine triphosphate ; ADP-glucose pyrophosphorylase ; Allosteric Regulation ; binding capacity ; biosynthesis ; catalytic activity ; chimerism ; corn ; cysteine ; endosperm ; Endosperm - enzymology ; Enzyme Activation ; Enzyme Activators - chemistry ; Enzyme kinetics ; Enzyme Stability ; enzymes ; Glucose-1-Phosphate Adenylyltransferase - chemistry ; Glucose-1-Phosphate Adenylyltransferase - genetics ; Glyceric Acids - chemistry ; heat ; heat stability ; Hot Temperature ; Kinetics ; Maize ; Mechanism ; Oxidation-Reduction ; Phosphates - chemistry ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Tubers - enzymology ; potatoes ; Protein Subunits - chemistry ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Solanum tuberosum - enzymology ; starch ; Zea mays - enzymology</subject><ispartof>Archives of biochemistry and biophysics, 2013-07, Vol.535 (2), p.215-226</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-49b9d4cf3bb8ec52119c58e0c46c6aabf8a51f2b689b7f6bb9f40df3e247414f3</citedby><cites>FETCH-LOGICAL-c377t-49b9d4cf3bb8ec52119c58e0c46c6aabf8a51f2b689b7f6bb9f40df3e247414f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.abb.2013.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23603314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boehlein, Susan K.</creatorcontrib><creatorcontrib>Shaw, Janine R.</creatorcontrib><creatorcontrib>Hwang, Seon K.</creatorcontrib><creatorcontrib>Stewart, Jon D.</creatorcontrib><creatorcontrib>Curtis Hannah, L.</creatorcontrib><title>Deciphering the kinetic mechanisms controlling selected plant ADP-glucose pyrophosphorylases</title><title>Archives of biochemistry and biophysics</title><addtitle>Arch Biochem Biophys</addtitle><description>•AGPase, a rate-limiting enzyme in starch biosynthesis, is highly regulated.•With 3-PGA, each AGPase followed a Theorell-Chance Bi Bi mechanism.•3-PGA affects binding of substrates, kcat or both, depending on the isoform.•Without 3-PGA one isoform changes from a Theorell-Chance Bi Bi to a rapid equilibrium mechanism.•An unusual phenomena of product activation is also seen in the absence of 3-PGA. ADP-Glc pyrophosphorylase (AGPase), a rate-limiting enzyme in starch biosynthesis, is controlled by thermostability and allosteric regulation. Previous studies suggested that redox affects turnover number and heat stability of AGPases. Here, we investigated how allostery and redox state affect kinetic mechanisms of the reduced, heat labile and the oxidized, heat stable potato tuber enzymes; the heat labile maize endosperm enzyme and a chimeric maize/potato heat stable enzyme that lacks the cysteine responsible for redox changes. With 3-PGA, all AGPases followed a Theorell-Chance Bi Bi mechanism with ATP binding first and ADP-Glc releasing last. 3-PGA increases the binding affinity for both substrates with little effect on velocity for the maize and MP isoforms. By contrast, 3-PGA increases the velocity and the affinity for G-1-P for the potato enzymes. Redox state does not affect kcat of the two potato isoforms. Without 3-PGA the oxidized potato enzyme exhibits a rapid equilibrium random Bi Bi mechanism with a dead end ternary complex. This fundamental change from rapid, ordered binding with little buildup of intermediates to a mechanism featuring relatively slow, random binding is unique to the oxidized potato tuber enzyme. Finally, ADP-Glc the physiologically relevant product of this enzyme has complex, isoform-specific effects on catalysis.</description><subject>adenosine triphosphate</subject><subject>ADP-glucose pyrophosphorylase</subject><subject>Allosteric Regulation</subject><subject>binding capacity</subject><subject>biosynthesis</subject><subject>catalytic activity</subject><subject>chimerism</subject><subject>corn</subject><subject>cysteine</subject><subject>endosperm</subject><subject>Endosperm - enzymology</subject><subject>Enzyme Activation</subject><subject>Enzyme Activators - chemistry</subject><subject>Enzyme kinetics</subject><subject>Enzyme Stability</subject><subject>enzymes</subject><subject>Glucose-1-Phosphate Adenylyltransferase - chemistry</subject><subject>Glucose-1-Phosphate Adenylyltransferase - genetics</subject><subject>Glyceric Acids - chemistry</subject><subject>heat</subject><subject>heat stability</subject><subject>Hot Temperature</subject><subject>Kinetics</subject><subject>Maize</subject><subject>Mechanism</subject><subject>Oxidation-Reduction</subject><subject>Phosphates - chemistry</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Tubers - enzymology</subject><subject>potatoes</subject><subject>Protein Subunits - chemistry</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Solanum tuberosum - enzymology</subject><subject>starch</subject><subject>Zea mays - enzymology</subject><issn>0003-9861</issn><issn>1096-0384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE2P0zAQhi0EYkvhB3CBHLkkjGPHScRptcuXtBJIsDcky3bGrUsSB0-K1H-Pqy4cOYxGGj3vq9HD2EsOFQeu3h4qY21VAxcVyApAPGIbDr0qQXTyMdtAPpV9p_gVe0Z0AOBcqvopu6qFAiG43LAft-jCsscU5l2x7rH4GWZcgysmdHszB5qocHFeUxzHM0I4oltxKJbRzGtxffu13I1HFwmL5ZTiso-UJ51GQ0jP2RNvRsIXD3vL7j-8_37zqbz78vHzzfVd6UTbrqXsbT9I54W1Hbqm5rx3TYfgpHLKGOs703BfW9X1tvXK2t5LGLzAWraSSy-27M2ld0nx1xFp1VMgh2N-EeORNBeq7bqmzjq2jF9QlyJRQq-XFCaTTpqDPkvVB52l6rNUDVLnSM68eqg_2gmHf4m_FjPw-gJ4E7XZpUD6_ltuaABq3ih5Jt5dCMwafgdMmlzA2eEQUvaphxj-88AfLBCSUg</recordid><startdate>20130715</startdate><enddate>20130715</enddate><creator>Boehlein, Susan K.</creator><creator>Shaw, Janine R.</creator><creator>Hwang, Seon K.</creator><creator>Stewart, Jon D.</creator><creator>Curtis Hannah, L.</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130715</creationdate><title>Deciphering the kinetic mechanisms controlling selected plant ADP-glucose pyrophosphorylases</title><author>Boehlein, Susan K. ; Shaw, Janine R. ; Hwang, Seon K. ; Stewart, Jon D. ; Curtis Hannah, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-49b9d4cf3bb8ec52119c58e0c46c6aabf8a51f2b689b7f6bb9f40df3e247414f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adenosine triphosphate</topic><topic>ADP-glucose pyrophosphorylase</topic><topic>Allosteric Regulation</topic><topic>binding capacity</topic><topic>biosynthesis</topic><topic>catalytic activity</topic><topic>chimerism</topic><topic>corn</topic><topic>cysteine</topic><topic>endosperm</topic><topic>Endosperm - enzymology</topic><topic>Enzyme Activation</topic><topic>Enzyme Activators - chemistry</topic><topic>Enzyme kinetics</topic><topic>Enzyme Stability</topic><topic>enzymes</topic><topic>Glucose-1-Phosphate Adenylyltransferase - chemistry</topic><topic>Glucose-1-Phosphate Adenylyltransferase - genetics</topic><topic>Glyceric Acids - chemistry</topic><topic>heat</topic><topic>heat stability</topic><topic>Hot Temperature</topic><topic>Kinetics</topic><topic>Maize</topic><topic>Mechanism</topic><topic>Oxidation-Reduction</topic><topic>Phosphates - chemistry</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Tubers - enzymology</topic><topic>potatoes</topic><topic>Protein Subunits - chemistry</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Solanum tuberosum - enzymology</topic><topic>starch</topic><topic>Zea mays - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boehlein, Susan K.</creatorcontrib><creatorcontrib>Shaw, Janine R.</creatorcontrib><creatorcontrib>Hwang, Seon K.</creatorcontrib><creatorcontrib>Stewart, Jon D.</creatorcontrib><creatorcontrib>Curtis Hannah, L.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boehlein, Susan K.</au><au>Shaw, Janine R.</au><au>Hwang, Seon K.</au><au>Stewart, Jon D.</au><au>Curtis Hannah, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering the kinetic mechanisms controlling selected plant ADP-glucose pyrophosphorylases</atitle><jtitle>Archives of biochemistry and biophysics</jtitle><addtitle>Arch Biochem Biophys</addtitle><date>2013-07-15</date><risdate>2013</risdate><volume>535</volume><issue>2</issue><spage>215</spage><epage>226</epage><pages>215-226</pages><issn>0003-9861</issn><eissn>1096-0384</eissn><abstract>•AGPase, a rate-limiting enzyme in starch biosynthesis, is highly regulated.•With 3-PGA, each AGPase followed a Theorell-Chance Bi Bi mechanism.•3-PGA affects binding of substrates, kcat or both, depending on the isoform.•Without 3-PGA one isoform changes from a Theorell-Chance Bi Bi to a rapid equilibrium mechanism.•An unusual phenomena of product activation is also seen in the absence of 3-PGA. ADP-Glc pyrophosphorylase (AGPase), a rate-limiting enzyme in starch biosynthesis, is controlled by thermostability and allosteric regulation. Previous studies suggested that redox affects turnover number and heat stability of AGPases. Here, we investigated how allostery and redox state affect kinetic mechanisms of the reduced, heat labile and the oxidized, heat stable potato tuber enzymes; the heat labile maize endosperm enzyme and a chimeric maize/potato heat stable enzyme that lacks the cysteine responsible for redox changes. With 3-PGA, all AGPases followed a Theorell-Chance Bi Bi mechanism with ATP binding first and ADP-Glc releasing last. 3-PGA increases the binding affinity for both substrates with little effect on velocity for the maize and MP isoforms. By contrast, 3-PGA increases the velocity and the affinity for G-1-P for the potato enzymes. Redox state does not affect kcat of the two potato isoforms. Without 3-PGA the oxidized potato enzyme exhibits a rapid equilibrium random Bi Bi mechanism with a dead end ternary complex. This fundamental change from rapid, ordered binding with little buildup of intermediates to a mechanism featuring relatively slow, random binding is unique to the oxidized potato tuber enzyme. Finally, ADP-Glc the physiologically relevant product of this enzyme has complex, isoform-specific effects on catalysis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23603314</pmid><doi>10.1016/j.abb.2013.04.003</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9861
ispartof Archives of biochemistry and biophysics, 2013-07, Vol.535 (2), p.215-226
issn 0003-9861
1096-0384
language eng
recordid cdi_proquest_miscellaneous_1367885200
source MEDLINE; Elsevier ScienceDirect Journals
subjects adenosine triphosphate
ADP-glucose pyrophosphorylase
Allosteric Regulation
binding capacity
biosynthesis
catalytic activity
chimerism
corn
cysteine
endosperm
Endosperm - enzymology
Enzyme Activation
Enzyme Activators - chemistry
Enzyme kinetics
Enzyme Stability
enzymes
Glucose-1-Phosphate Adenylyltransferase - chemistry
Glucose-1-Phosphate Adenylyltransferase - genetics
Glyceric Acids - chemistry
heat
heat stability
Hot Temperature
Kinetics
Maize
Mechanism
Oxidation-Reduction
Phosphates - chemistry
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Tubers - enzymology
potatoes
Protein Subunits - chemistry
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Solanum tuberosum - enzymology
starch
Zea mays - enzymology
title Deciphering the kinetic mechanisms controlling selected plant ADP-glucose pyrophosphorylases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20the%20kinetic%20mechanisms%20controlling%20selected%20plant%20ADP-glucose%20pyrophosphorylases&rft.jtitle=Archives%20of%20biochemistry%20and%20biophysics&rft.au=Boehlein,%20Susan%20K.&rft.date=2013-07-15&rft.volume=535&rft.issue=2&rft.spage=215&rft.epage=226&rft.pages=215-226&rft.issn=0003-9861&rft.eissn=1096-0384&rft_id=info:doi/10.1016/j.abb.2013.04.003&rft_dat=%3Cproquest_cross%3E1367885200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1367885200&rft_id=info:pmid/23603314&rft_els_id=S0003986113001070&rfr_iscdi=true