A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix
Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2013-07, Vol.32 (16), p.2850-2858 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2858 |
---|---|
container_issue | 16 |
container_start_page | 2850 |
container_title | Statistics in medicine |
container_volume | 32 |
creator | Westgate, Philip M. |
description | Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A popular approach is the use of an unstructured working correlation matrix, as it is not as restrictive as simpler structures such as exchangeable and AR‐1 and thus can theoretically improve efficiency. However, because of the potential for having to estimate a large number of correlation parameters, variances of regression parameter estimates can be larger than theoretically expected when utilizing the unstructured working correlation matrix. Therefore, standard error estimates can be negatively biased. To account for this additional finite‐sample variability, we derive a bias correction that can be applied to typical estimators of the covariance matrix of parameter estimates. Via simulation and in application to a longitudinal study, we show that our proposed correction improves standard error estimation and statistical inference. Copyright © 2012 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.5709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1367884589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3000661021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3879-47ff1f0542c19a60a61551c67c8bc29876ac469bcf1c8ffc3a9f03e5558d72603</originalsourceid><addsrcrecordid>eNp1kdtOFTEUhhujkS2a-ASmiTfeDLadaTu9RFQkQTBBJfGm6e5eheJMB3rg4GP4xHZgg4mJV03Tb31da_0IvaRkixLC3iY_bnFJ1CO0oETJhjDeP0YLwqRshKR8Az1L6YwQSjmTT9EGaxnnlHcL9HsbL71J2E4xgs1-CthNsV4vTfQmWMCQsh9NnmLCecJ-PI_TJWAfHESY3698PsUnECCawf-C1X2BDycYLoqZnbX01GRcEmATcAkpx2JziZW-_Xi4pXCtiv76OXrizJDgxfrcRN8-fvi686nZP9zd29neb2zbS9V00jnqCO-YpcoIYgStM1khbb-0TPVSGNsJtbSO2t452xrlSAuc834lmSDtJnpz560TXZTatR59sjAMJsBUkqatkH3f8V5V9PU_6NlUYqjdzZRSnWCy-yu0cUopgtPnsW4i3mhK9JyTrjnpOaeKvloLy3KE1QN4H0wFmjvgyg9w81-RPtr7vBaueZ8yXD_wJv7UQraS6-ODXf1ede--H3051j_aP2ilrp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369946274</pqid></control><display><type>article</type><title>A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Westgate, Philip M.</creator><creatorcontrib>Westgate, Philip M.</creatorcontrib><description>Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A popular approach is the use of an unstructured working correlation matrix, as it is not as restrictive as simpler structures such as exchangeable and AR‐1 and thus can theoretically improve efficiency. However, because of the potential for having to estimate a large number of correlation parameters, variances of regression parameter estimates can be larger than theoretically expected when utilizing the unstructured working correlation matrix. Therefore, standard error estimates can be negatively biased. To account for this additional finite‐sample variability, we derive a bias correction that can be applied to typical estimators of the covariance matrix of parameter estimates. Via simulation and in application to a longitudinal study, we show that our proposed correction improves standard error estimation and statistical inference. Copyright © 2012 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.5709</identifier><identifier>PMID: 23255154</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Anticonvulsants - pharmacology ; Anticonvulsants - therapeutic use ; Bias ; Computer Simulation ; Correlation analysis ; correlation structure ; efficiency ; Epilepsy - drug therapy ; gamma-Aminobutyric Acid - analogs & derivatives ; gamma-Aminobutyric Acid - pharmacology ; gamma-Aminobutyric Acid - therapeutic use ; generalized estimating equations ; Humans ; Longitudinal Studies ; Matrix ; Medical statistics ; Models, Statistical ; Parameter estimation ; Seizures - prevention & control ; Simulation ; standard error ; Statistical inference ; unstructured</subject><ispartof>Statistics in medicine, 2013-07, Vol.32 (16), p.2850-2858</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Jul 20, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3879-47ff1f0542c19a60a61551c67c8bc29876ac469bcf1c8ffc3a9f03e5558d72603</citedby><cites>FETCH-LOGICAL-c3879-47ff1f0542c19a60a61551c67c8bc29876ac469bcf1c8ffc3a9f03e5558d72603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.5709$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.5709$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23255154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westgate, Philip M.</creatorcontrib><title>A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A popular approach is the use of an unstructured working correlation matrix, as it is not as restrictive as simpler structures such as exchangeable and AR‐1 and thus can theoretically improve efficiency. However, because of the potential for having to estimate a large number of correlation parameters, variances of regression parameter estimates can be larger than theoretically expected when utilizing the unstructured working correlation matrix. Therefore, standard error estimates can be negatively biased. To account for this additional finite‐sample variability, we derive a bias correction that can be applied to typical estimators of the covariance matrix of parameter estimates. Via simulation and in application to a longitudinal study, we show that our proposed correction improves standard error estimation and statistical inference. Copyright © 2012 John Wiley & Sons, Ltd.</description><subject>Anticonvulsants - pharmacology</subject><subject>Anticonvulsants - therapeutic use</subject><subject>Bias</subject><subject>Computer Simulation</subject><subject>Correlation analysis</subject><subject>correlation structure</subject><subject>efficiency</subject><subject>Epilepsy - drug therapy</subject><subject>gamma-Aminobutyric Acid - analogs & derivatives</subject><subject>gamma-Aminobutyric Acid - pharmacology</subject><subject>gamma-Aminobutyric Acid - therapeutic use</subject><subject>generalized estimating equations</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Matrix</subject><subject>Medical statistics</subject><subject>Models, Statistical</subject><subject>Parameter estimation</subject><subject>Seizures - prevention & control</subject><subject>Simulation</subject><subject>standard error</subject><subject>Statistical inference</subject><subject>unstructured</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kdtOFTEUhhujkS2a-ASmiTfeDLadaTu9RFQkQTBBJfGm6e5eheJMB3rg4GP4xHZgg4mJV03Tb31da_0IvaRkixLC3iY_bnFJ1CO0oETJhjDeP0YLwqRshKR8Az1L6YwQSjmTT9EGaxnnlHcL9HsbL71J2E4xgs1-CthNsV4vTfQmWMCQsh9NnmLCecJ-PI_TJWAfHESY3698PsUnECCawf-C1X2BDycYLoqZnbX01GRcEmATcAkpx2JziZW-_Xi4pXCtiv76OXrizJDgxfrcRN8-fvi686nZP9zd29neb2zbS9V00jnqCO-YpcoIYgStM1khbb-0TPVSGNsJtbSO2t452xrlSAuc834lmSDtJnpz560TXZTatR59sjAMJsBUkqatkH3f8V5V9PU_6NlUYqjdzZRSnWCy-yu0cUopgtPnsW4i3mhK9JyTrjnpOaeKvloLy3KE1QN4H0wFmjvgyg9w81-RPtr7vBaueZ8yXD_wJv7UQraS6-ODXf1ede--H3051j_aP2ilrp4</recordid><startdate>20130720</startdate><enddate>20130720</enddate><creator>Westgate, Philip M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20130720</creationdate><title>A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix</title><author>Westgate, Philip M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3879-47ff1f0542c19a60a61551c67c8bc29876ac469bcf1c8ffc3a9f03e5558d72603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anticonvulsants - pharmacology</topic><topic>Anticonvulsants - therapeutic use</topic><topic>Bias</topic><topic>Computer Simulation</topic><topic>Correlation analysis</topic><topic>correlation structure</topic><topic>efficiency</topic><topic>Epilepsy - drug therapy</topic><topic>gamma-Aminobutyric Acid - analogs & derivatives</topic><topic>gamma-Aminobutyric Acid - pharmacology</topic><topic>gamma-Aminobutyric Acid - therapeutic use</topic><topic>generalized estimating equations</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Matrix</topic><topic>Medical statistics</topic><topic>Models, Statistical</topic><topic>Parameter estimation</topic><topic>Seizures - prevention & control</topic><topic>Simulation</topic><topic>standard error</topic><topic>Statistical inference</topic><topic>unstructured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westgate, Philip M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westgate, Philip M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2013-07-20</date><risdate>2013</risdate><volume>32</volume><issue>16</issue><spage>2850</spage><epage>2858</epage><pages>2850-2858</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A popular approach is the use of an unstructured working correlation matrix, as it is not as restrictive as simpler structures such as exchangeable and AR‐1 and thus can theoretically improve efficiency. However, because of the potential for having to estimate a large number of correlation parameters, variances of regression parameter estimates can be larger than theoretically expected when utilizing the unstructured working correlation matrix. Therefore, standard error estimates can be negatively biased. To account for this additional finite‐sample variability, we derive a bias correction that can be applied to typical estimators of the covariance matrix of parameter estimates. Via simulation and in application to a longitudinal study, we show that our proposed correction improves standard error estimation and statistical inference. Copyright © 2012 John Wiley & Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23255154</pmid><doi>10.1002/sim.5709</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2013-07, Vol.32 (16), p.2850-2858 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_1367884589 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Anticonvulsants - pharmacology Anticonvulsants - therapeutic use Bias Computer Simulation Correlation analysis correlation structure efficiency Epilepsy - drug therapy gamma-Aminobutyric Acid - analogs & derivatives gamma-Aminobutyric Acid - pharmacology gamma-Aminobutyric Acid - therapeutic use generalized estimating equations Humans Longitudinal Studies Matrix Medical statistics Models, Statistical Parameter estimation Seizures - prevention & control Simulation standard error Statistical inference unstructured |
title | A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bias%20correction%20for%20covariance%20estimators%20to%20improve%20inference%20with%20generalized%20estimating%20equations%20that%20use%20an%20unstructured%20correlation%20matrix&rft.jtitle=Statistics%20in%20medicine&rft.au=Westgate,%20Philip%20M.&rft.date=2013-07-20&rft.volume=32&rft.issue=16&rft.spage=2850&rft.epage=2858&rft.pages=2850-2858&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.5709&rft_dat=%3Cproquest_cross%3E3000661021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369946274&rft_id=info:pmid/23255154&rfr_iscdi=true |