A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix

Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2013-07, Vol.32 (16), p.2850-2858
1. Verfasser: Westgate, Philip M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2858
container_issue 16
container_start_page 2850
container_title Statistics in medicine
container_volume 32
creator Westgate, Philip M.
description Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A popular approach is the use of an unstructured working correlation matrix, as it is not as restrictive as simpler structures such as exchangeable and AR‐1 and thus can theoretically improve efficiency. However, because of the potential for having to estimate a large number of correlation parameters, variances of regression parameter estimates can be larger than theoretically expected when utilizing the unstructured working correlation matrix. Therefore, standard error estimates can be negatively biased. To account for this additional finite‐sample variability, we derive a bias correction that can be applied to typical estimators of the covariance matrix of parameter estimates. Via simulation and in application to a longitudinal study, we show that our proposed correction improves standard error estimation and statistical inference. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.5709
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1367884589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3000661021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3879-47ff1f0542c19a60a61551c67c8bc29876ac469bcf1c8ffc3a9f03e5558d72603</originalsourceid><addsrcrecordid>eNp1kdtOFTEUhhujkS2a-ASmiTfeDLadaTu9RFQkQTBBJfGm6e5eheJMB3rg4GP4xHZgg4mJV03Tb31da_0IvaRkixLC3iY_bnFJ1CO0oETJhjDeP0YLwqRshKR8Az1L6YwQSjmTT9EGaxnnlHcL9HsbL71J2E4xgs1-CthNsV4vTfQmWMCQsh9NnmLCecJ-PI_TJWAfHESY3698PsUnECCawf-C1X2BDycYLoqZnbX01GRcEmATcAkpx2JziZW-_Xi4pXCtiv76OXrizJDgxfrcRN8-fvi686nZP9zd29neb2zbS9V00jnqCO-YpcoIYgStM1khbb-0TPVSGNsJtbSO2t452xrlSAuc834lmSDtJnpz560TXZTatR59sjAMJsBUkqatkH3f8V5V9PU_6NlUYqjdzZRSnWCy-yu0cUopgtPnsW4i3mhK9JyTrjnpOaeKvloLy3KE1QN4H0wFmjvgyg9w81-RPtr7vBaueZ8yXD_wJv7UQraS6-ODXf1ede--H3051j_aP2ilrp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369946274</pqid></control><display><type>article</type><title>A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Westgate, Philip M.</creator><creatorcontrib>Westgate, Philip M.</creatorcontrib><description>Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A popular approach is the use of an unstructured working correlation matrix, as it is not as restrictive as simpler structures such as exchangeable and AR‐1 and thus can theoretically improve efficiency. However, because of the potential for having to estimate a large number of correlation parameters, variances of regression parameter estimates can be larger than theoretically expected when utilizing the unstructured working correlation matrix. Therefore, standard error estimates can be negatively biased. To account for this additional finite‐sample variability, we derive a bias correction that can be applied to typical estimators of the covariance matrix of parameter estimates. Via simulation and in application to a longitudinal study, we show that our proposed correction improves standard error estimation and statistical inference. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.5709</identifier><identifier>PMID: 23255154</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Anticonvulsants - pharmacology ; Anticonvulsants - therapeutic use ; Bias ; Computer Simulation ; Correlation analysis ; correlation structure ; efficiency ; Epilepsy - drug therapy ; gamma-Aminobutyric Acid - analogs &amp; derivatives ; gamma-Aminobutyric Acid - pharmacology ; gamma-Aminobutyric Acid - therapeutic use ; generalized estimating equations ; Humans ; Longitudinal Studies ; Matrix ; Medical statistics ; Models, Statistical ; Parameter estimation ; Seizures - prevention &amp; control ; Simulation ; standard error ; Statistical inference ; unstructured</subject><ispartof>Statistics in medicine, 2013-07, Vol.32 (16), p.2850-2858</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Jul 20, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3879-47ff1f0542c19a60a61551c67c8bc29876ac469bcf1c8ffc3a9f03e5558d72603</citedby><cites>FETCH-LOGICAL-c3879-47ff1f0542c19a60a61551c67c8bc29876ac469bcf1c8ffc3a9f03e5558d72603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.5709$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.5709$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23255154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westgate, Philip M.</creatorcontrib><title>A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A popular approach is the use of an unstructured working correlation matrix, as it is not as restrictive as simpler structures such as exchangeable and AR‐1 and thus can theoretically improve efficiency. However, because of the potential for having to estimate a large number of correlation parameters, variances of regression parameter estimates can be larger than theoretically expected when utilizing the unstructured working correlation matrix. Therefore, standard error estimates can be negatively biased. To account for this additional finite‐sample variability, we derive a bias correction that can be applied to typical estimators of the covariance matrix of parameter estimates. Via simulation and in application to a longitudinal study, we show that our proposed correction improves standard error estimation and statistical inference. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>Anticonvulsants - pharmacology</subject><subject>Anticonvulsants - therapeutic use</subject><subject>Bias</subject><subject>Computer Simulation</subject><subject>Correlation analysis</subject><subject>correlation structure</subject><subject>efficiency</subject><subject>Epilepsy - drug therapy</subject><subject>gamma-Aminobutyric Acid - analogs &amp; derivatives</subject><subject>gamma-Aminobutyric Acid - pharmacology</subject><subject>gamma-Aminobutyric Acid - therapeutic use</subject><subject>generalized estimating equations</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Matrix</subject><subject>Medical statistics</subject><subject>Models, Statistical</subject><subject>Parameter estimation</subject><subject>Seizures - prevention &amp; control</subject><subject>Simulation</subject><subject>standard error</subject><subject>Statistical inference</subject><subject>unstructured</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kdtOFTEUhhujkS2a-ASmiTfeDLadaTu9RFQkQTBBJfGm6e5eheJMB3rg4GP4xHZgg4mJV03Tb31da_0IvaRkixLC3iY_bnFJ1CO0oETJhjDeP0YLwqRshKR8Az1L6YwQSjmTT9EGaxnnlHcL9HsbL71J2E4xgs1-CthNsV4vTfQmWMCQsh9NnmLCecJ-PI_TJWAfHESY3698PsUnECCawf-C1X2BDycYLoqZnbX01GRcEmATcAkpx2JziZW-_Xi4pXCtiv76OXrizJDgxfrcRN8-fvi686nZP9zd29neb2zbS9V00jnqCO-YpcoIYgStM1khbb-0TPVSGNsJtbSO2t452xrlSAuc834lmSDtJnpz560TXZTatR59sjAMJsBUkqatkH3f8V5V9PU_6NlUYqjdzZRSnWCy-yu0cUopgtPnsW4i3mhK9JyTrjnpOaeKvloLy3KE1QN4H0wFmjvgyg9w81-RPtr7vBaueZ8yXD_wJv7UQraS6-ODXf1ede--H3051j_aP2ilrp4</recordid><startdate>20130720</startdate><enddate>20130720</enddate><creator>Westgate, Philip M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20130720</creationdate><title>A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix</title><author>Westgate, Philip M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3879-47ff1f0542c19a60a61551c67c8bc29876ac469bcf1c8ffc3a9f03e5558d72603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anticonvulsants - pharmacology</topic><topic>Anticonvulsants - therapeutic use</topic><topic>Bias</topic><topic>Computer Simulation</topic><topic>Correlation analysis</topic><topic>correlation structure</topic><topic>efficiency</topic><topic>Epilepsy - drug therapy</topic><topic>gamma-Aminobutyric Acid - analogs &amp; derivatives</topic><topic>gamma-Aminobutyric Acid - pharmacology</topic><topic>gamma-Aminobutyric Acid - therapeutic use</topic><topic>generalized estimating equations</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Matrix</topic><topic>Medical statistics</topic><topic>Models, Statistical</topic><topic>Parameter estimation</topic><topic>Seizures - prevention &amp; control</topic><topic>Simulation</topic><topic>standard error</topic><topic>Statistical inference</topic><topic>unstructured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westgate, Philip M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westgate, Philip M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2013-07-20</date><risdate>2013</risdate><volume>32</volume><issue>16</issue><spage>2850</spage><epage>2858</epage><pages>2850-2858</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A popular approach is the use of an unstructured working correlation matrix, as it is not as restrictive as simpler structures such as exchangeable and AR‐1 and thus can theoretically improve efficiency. However, because of the potential for having to estimate a large number of correlation parameters, variances of regression parameter estimates can be larger than theoretically expected when utilizing the unstructured working correlation matrix. Therefore, standard error estimates can be negatively biased. To account for this additional finite‐sample variability, we derive a bias correction that can be applied to typical estimators of the covariance matrix of parameter estimates. Via simulation and in application to a longitudinal study, we show that our proposed correction improves standard error estimation and statistical inference. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23255154</pmid><doi>10.1002/sim.5709</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2013-07, Vol.32 (16), p.2850-2858
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_1367884589
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Anticonvulsants - pharmacology
Anticonvulsants - therapeutic use
Bias
Computer Simulation
Correlation analysis
correlation structure
efficiency
Epilepsy - drug therapy
gamma-Aminobutyric Acid - analogs & derivatives
gamma-Aminobutyric Acid - pharmacology
gamma-Aminobutyric Acid - therapeutic use
generalized estimating equations
Humans
Longitudinal Studies
Matrix
Medical statistics
Models, Statistical
Parameter estimation
Seizures - prevention & control
Simulation
standard error
Statistical inference
unstructured
title A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bias%20correction%20for%20covariance%20estimators%20to%20improve%20inference%20with%20generalized%20estimating%20equations%20that%20use%20an%20unstructured%20correlation%20matrix&rft.jtitle=Statistics%20in%20medicine&rft.au=Westgate,%20Philip%20M.&rft.date=2013-07-20&rft.volume=32&rft.issue=16&rft.spage=2850&rft.epage=2858&rft.pages=2850-2858&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.5709&rft_dat=%3Cproquest_cross%3E3000661021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369946274&rft_id=info:pmid/23255154&rfr_iscdi=true