Coexistence, niches and biodiversity effects on ecosystem functioning
General principles from coexistence theory are often invoked to explain how and why mixtures of species outperform monocultures. However, the complementarity and selection effects commonly measured in biodiversity experiments do not precisely quantify the niche and relative fitness differences that...
Gespeichert in:
Veröffentlicht in: | Ecology letters 2013-05, Vol.16 (s1), p.116-127 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | s1 |
container_start_page | 116 |
container_title | Ecology letters |
container_volume | 16 |
creator | Turnbull, Lindsay Ann Levine, Jonathan M. Loreau, Michel Hector, Andy |
description | General principles from coexistence theory are often invoked to explain how and why mixtures of species outperform monocultures. However, the complementarity and selection effects commonly measured in biodiversity experiments do not precisely quantify the niche and relative fitness differences that govern species coexistence. Given this lack of direct correspondence, how can we know whether species‐rich mixtures are stable and that the benefits of diversity will therefore persist? We develop a resource‐based included‐niche model in which plant species have asymmetric access to a nested set of belowground resource pools. We use the model to show that positive complementarity effects arise from stabilising niche differences, but do not necessarily lead to stable coexistence and hence can be transient. In addition, these transient complementarity effects occur in the model when there is no complementary resource use among species. Including a trade‐off between uptake rates and the size of the resource pool stabilised interactions and led to persistent complementarity coupled with weak or negative selection effects, consistent with results from the longest‐running field biodiversity experiments. We suggest that future progress requires a greater mechanistic understanding of the links between ecosystem functions and their underlying biological processes. |
doi_str_mv | 10.1111/ele.12056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1367491057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2984253191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5656-c093e85d8e43544f03f9288c5a2ba330aba03aee3d71826ef5401cf01f4c242a3</originalsourceid><addsrcrecordid>eNqN0U1LIzEYB_Agu6irHvwCy4AXBUfzOpk5SqlWKCu-obeQZp6s0WlSJzOu_famVnsQhM0lOfyeP-T5I7RL8BFJ5xgaOCIUi2INbRJekBxTXv5Yvdn9BvoV4yPGhFaSrKMNyqisSkE20XAQ4NXFDryBw8w78wAx077OJi7U7gXa6Lp5BtaC6WIWfAYmxHny08z23nQueOf_bqOfVjcRdj7uLXR7OrwZjPLxxdn54GScG1GIIje4YlCKugTOBOcWM1vRsjRC04lmDOuJxkwDsFqSkhZgBcfEWEwsN5RTzbbQ_jJ31obnHmKnpi4aaBrtIfRREVZIXhEs5H9QIXjCFU107wt9DH3r00cWSmLMpCyTOlgq04YYW7Bq1rqpbueKYLWoQaUa1HsNyf7-SOwnU6hX8nPvCRwvwT_XwPz7JDUcDz8j8-XEoqzX1YRun1QhmRTq7s-ZEvzq-nJ0StWIvQFoCZ6y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357003778</pqid></control><display><type>article</type><title>Coexistence, niches and biodiversity effects on ecosystem functioning</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Turnbull, Lindsay Ann ; Levine, Jonathan M. ; Loreau, Michel ; Hector, Andy</creator><contributor>Lambers, Janneke Hille Ris ; Lambers, Janneke Hille Ris</contributor><creatorcontrib>Turnbull, Lindsay Ann ; Levine, Jonathan M. ; Loreau, Michel ; Hector, Andy ; Lambers, Janneke Hille Ris ; Lambers, Janneke Hille Ris</creatorcontrib><description>General principles from coexistence theory are often invoked to explain how and why mixtures of species outperform monocultures. However, the complementarity and selection effects commonly measured in biodiversity experiments do not precisely quantify the niche and relative fitness differences that govern species coexistence. Given this lack of direct correspondence, how can we know whether species‐rich mixtures are stable and that the benefits of diversity will therefore persist? We develop a resource‐based included‐niche model in which plant species have asymmetric access to a nested set of belowground resource pools. We use the model to show that positive complementarity effects arise from stabilising niche differences, but do not necessarily lead to stable coexistence and hence can be transient. In addition, these transient complementarity effects occur in the model when there is no complementary resource use among species. Including a trade‐off between uptake rates and the size of the resource pool stabilised interactions and led to persistent complementarity coupled with weak or negative selection effects, consistent with results from the longest‐running field biodiversity experiments. We suggest that future progress requires a greater mechanistic understanding of the links between ecosystem functions and their underlying biological processes.</description><identifier>ISSN: 1461-023X</identifier><identifier>EISSN: 1461-0248</identifier><identifier>DOI: 10.1111/ele.12056</identifier><identifier>PMID: 23279851</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Additive partition ; Biodiversity ; coexistence ; complementarity effects ; Ecosystem ; Ecosystem studies ; Models, Biological ; Models, Theoretical ; niches ; Nitrogen - pharmacokinetics ; Plant Development ; Plants - metabolism ; Seasons ; selection effects ; Soil ; transient complementarity</subject><ispartof>Ecology letters, 2013-05, Vol.16 (s1), p.116-127</ispartof><rights>2012 John Wiley & Sons Ltd/CNRS</rights><rights>2012 John Wiley & Sons Ltd/CNRS.</rights><rights>Copyright © 2013 John Wiley & Sons Ltd/CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5656-c093e85d8e43544f03f9288c5a2ba330aba03aee3d71826ef5401cf01f4c242a3</citedby><cites>FETCH-LOGICAL-c5656-c093e85d8e43544f03f9288c5a2ba330aba03aee3d71826ef5401cf01f4c242a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fele.12056$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fele.12056$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23279851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lambers, Janneke Hille Ris</contributor><contributor>Lambers, Janneke Hille Ris</contributor><creatorcontrib>Turnbull, Lindsay Ann</creatorcontrib><creatorcontrib>Levine, Jonathan M.</creatorcontrib><creatorcontrib>Loreau, Michel</creatorcontrib><creatorcontrib>Hector, Andy</creatorcontrib><title>Coexistence, niches and biodiversity effects on ecosystem functioning</title><title>Ecology letters</title><addtitle>Ecol Lett</addtitle><description>General principles from coexistence theory are often invoked to explain how and why mixtures of species outperform monocultures. However, the complementarity and selection effects commonly measured in biodiversity experiments do not precisely quantify the niche and relative fitness differences that govern species coexistence. Given this lack of direct correspondence, how can we know whether species‐rich mixtures are stable and that the benefits of diversity will therefore persist? We develop a resource‐based included‐niche model in which plant species have asymmetric access to a nested set of belowground resource pools. We use the model to show that positive complementarity effects arise from stabilising niche differences, but do not necessarily lead to stable coexistence and hence can be transient. In addition, these transient complementarity effects occur in the model when there is no complementary resource use among species. Including a trade‐off between uptake rates and the size of the resource pool stabilised interactions and led to persistent complementarity coupled with weak or negative selection effects, consistent with results from the longest‐running field biodiversity experiments. We suggest that future progress requires a greater mechanistic understanding of the links between ecosystem functions and their underlying biological processes.</description><subject>Additive partition</subject><subject>Biodiversity</subject><subject>coexistence</subject><subject>complementarity effects</subject><subject>Ecosystem</subject><subject>Ecosystem studies</subject><subject>Models, Biological</subject><subject>Models, Theoretical</subject><subject>niches</subject><subject>Nitrogen - pharmacokinetics</subject><subject>Plant Development</subject><subject>Plants - metabolism</subject><subject>Seasons</subject><subject>selection effects</subject><subject>Soil</subject><subject>transient complementarity</subject><issn>1461-023X</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1LIzEYB_Agu6irHvwCy4AXBUfzOpk5SqlWKCu-obeQZp6s0WlSJzOu_famVnsQhM0lOfyeP-T5I7RL8BFJ5xgaOCIUi2INbRJekBxTXv5Yvdn9BvoV4yPGhFaSrKMNyqisSkE20XAQ4NXFDryBw8w78wAx077OJi7U7gXa6Lp5BtaC6WIWfAYmxHny08z23nQueOf_bqOfVjcRdj7uLXR7OrwZjPLxxdn54GScG1GIIje4YlCKugTOBOcWM1vRsjRC04lmDOuJxkwDsFqSkhZgBcfEWEwsN5RTzbbQ_jJ31obnHmKnpi4aaBrtIfRREVZIXhEs5H9QIXjCFU107wt9DH3r00cWSmLMpCyTOlgq04YYW7Bq1rqpbueKYLWoQaUa1HsNyf7-SOwnU6hX8nPvCRwvwT_XwPz7JDUcDz8j8-XEoqzX1YRun1QhmRTq7s-ZEvzq-nJ0StWIvQFoCZ6y</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Turnbull, Lindsay Ann</creator><creator>Levine, Jonathan M.</creator><creator>Loreau, Michel</creator><creator>Hector, Andy</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>201305</creationdate><title>Coexistence, niches and biodiversity effects on ecosystem functioning</title><author>Turnbull, Lindsay Ann ; Levine, Jonathan M. ; Loreau, Michel ; Hector, Andy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5656-c093e85d8e43544f03f9288c5a2ba330aba03aee3d71826ef5401cf01f4c242a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Additive partition</topic><topic>Biodiversity</topic><topic>coexistence</topic><topic>complementarity effects</topic><topic>Ecosystem</topic><topic>Ecosystem studies</topic><topic>Models, Biological</topic><topic>Models, Theoretical</topic><topic>niches</topic><topic>Nitrogen - pharmacokinetics</topic><topic>Plant Development</topic><topic>Plants - metabolism</topic><topic>Seasons</topic><topic>selection effects</topic><topic>Soil</topic><topic>transient complementarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turnbull, Lindsay Ann</creatorcontrib><creatorcontrib>Levine, Jonathan M.</creatorcontrib><creatorcontrib>Loreau, Michel</creatorcontrib><creatorcontrib>Hector, Andy</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turnbull, Lindsay Ann</au><au>Levine, Jonathan M.</au><au>Loreau, Michel</au><au>Hector, Andy</au><au>Lambers, Janneke Hille Ris</au><au>Lambers, Janneke Hille Ris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coexistence, niches and biodiversity effects on ecosystem functioning</atitle><jtitle>Ecology letters</jtitle><addtitle>Ecol Lett</addtitle><date>2013-05</date><risdate>2013</risdate><volume>16</volume><issue>s1</issue><spage>116</spage><epage>127</epage><pages>116-127</pages><issn>1461-023X</issn><eissn>1461-0248</eissn><abstract>General principles from coexistence theory are often invoked to explain how and why mixtures of species outperform monocultures. However, the complementarity and selection effects commonly measured in biodiversity experiments do not precisely quantify the niche and relative fitness differences that govern species coexistence. Given this lack of direct correspondence, how can we know whether species‐rich mixtures are stable and that the benefits of diversity will therefore persist? We develop a resource‐based included‐niche model in which plant species have asymmetric access to a nested set of belowground resource pools. We use the model to show that positive complementarity effects arise from stabilising niche differences, but do not necessarily lead to stable coexistence and hence can be transient. In addition, these transient complementarity effects occur in the model when there is no complementary resource use among species. Including a trade‐off between uptake rates and the size of the resource pool stabilised interactions and led to persistent complementarity coupled with weak or negative selection effects, consistent with results from the longest‐running field biodiversity experiments. We suggest that future progress requires a greater mechanistic understanding of the links between ecosystem functions and their underlying biological processes.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23279851</pmid><doi>10.1111/ele.12056</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1461-023X |
ispartof | Ecology letters, 2013-05, Vol.16 (s1), p.116-127 |
issn | 1461-023X 1461-0248 |
language | eng |
recordid | cdi_proquest_miscellaneous_1367491057 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Additive partition Biodiversity coexistence complementarity effects Ecosystem Ecosystem studies Models, Biological Models, Theoretical niches Nitrogen - pharmacokinetics Plant Development Plants - metabolism Seasons selection effects Soil transient complementarity |
title | Coexistence, niches and biodiversity effects on ecosystem functioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coexistence,%20niches%20and%20biodiversity%20effects%20on%20ecosystem%20functioning&rft.jtitle=Ecology%20letters&rft.au=Turnbull,%20Lindsay%20Ann&rft.date=2013-05&rft.volume=16&rft.issue=s1&rft.spage=116&rft.epage=127&rft.pages=116-127&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/10.1111/ele.12056&rft_dat=%3Cproquest_cross%3E2984253191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357003778&rft_id=info:pmid/23279851&rfr_iscdi=true |