Comments on “A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit”

Po-Chedley and Fu investigated the difference in the magnitude of global temperature trends generated from the Microwave Sounding Unit (MSU) for the midtroposphere (TMT, surface to about 75 hPa) between the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Their approach wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2013-05, Vol.30 (5), p.1006-1013
Hauptverfasser: Christy, John R., Spencer, Roy W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1013
container_issue 5
container_start_page 1006
container_title Journal of atmospheric and oceanic technology
container_volume 30
creator Christy, John R.
Spencer, Roy W.
description Po-Chedley and Fu investigated the difference in the magnitude of global temperature trends generated from the Microwave Sounding Unit (MSU) for the midtroposphere (TMT, surface to about 75 hPa) between the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Their approach was to examine the magnitude of a noise-reduction coefficient of one short-lived satellite, NOAA-9, which differed from UAH and RSS. Using radiosonde comparisons over a 2-yr period, they calculated an adjustment to the UAH coefficient that, when applied to the UAH data, increased the UAH global TMT trend for 1979–2009 by +0.042 K decade−1, which then happens to agree with RSS’s TMT trend. In studying their analysis, the authors demonstrate 1) the adjustment calculated using radiosondes is inconclusive when errors are accounted for; 2) the adjustment was applied in a manner inconsistent with the UAH satellite merging strategy, creating a larger change than would be generated had the actual UAH methodology been followed; and 3) that trends of a similar product that uses the same UAH coefficient are essentially identical to UAH and RSS. Based on the authors’ previous analysis and additional work here, UAH will continue using the NOAA-9 noise-reduction coefficient, as is, for version 5.4 and the follow-on version 5.5.
doi_str_mv 10.1175/JTECH-D-12-00107.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1367490833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1367490833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-3685b0619e1a9d378a7fc5e33580ea4be1792820733d98f7d97b2922157a308b3</originalsourceid><addsrcrecordid>eNotkLtOwzAYhS0EEqXwAkweWVJ8SeJ4DGnLRYUOtGK0nMRpjRI72CmIrQ8CL9cnIW2Z_uX7js5_ALjGaIQxi26fFpPsIRgHmAQIYcRG-AQMcERQgEISn4IBYpQHKGLkHFx4_456iuJ4ANrMNo0ynYfWwN32J4V3WnqoDezWCj7rsnO2tb5dK6cLmK2lMaqGb9I1cCHdSnVwKovOur2-N17maRrwXiyc_ZKfCr7ajSm1WcGl0d1u-3sJzipZe3X1f4dgOZ0s-vKz-f1jls6CgpKwC2icRDmKMVdY8pKyRLKqiBSlUYKUDHOFGScJ6d-iJU8qVnKWE04IjpikKMnpENwcc1tnPzbKd6LRvlB1LY2yGy8wjVnIUUJpj5Ij2nf23qlKtE430n0LjMR-XnGYV4wFJuIwb2__AaLCbi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367490833</pqid></control><display><type>article</type><title>Comments on “A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit”</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Christy, John R. ; Spencer, Roy W.</creator><creatorcontrib>Christy, John R. ; Spencer, Roy W.</creatorcontrib><description>Po-Chedley and Fu investigated the difference in the magnitude of global temperature trends generated from the Microwave Sounding Unit (MSU) for the midtroposphere (TMT, surface to about 75 hPa) between the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Their approach was to examine the magnitude of a noise-reduction coefficient of one short-lived satellite, NOAA-9, which differed from UAH and RSS. Using radiosonde comparisons over a 2-yr period, they calculated an adjustment to the UAH coefficient that, when applied to the UAH data, increased the UAH global TMT trend for 1979–2009 by +0.042 K decade−1, which then happens to agree with RSS’s TMT trend. In studying their analysis, the authors demonstrate 1) the adjustment calculated using radiosondes is inconclusive when errors are accounted for; 2) the adjustment was applied in a manner inconsistent with the UAH satellite merging strategy, creating a larger change than would be generated had the actual UAH methodology been followed; and 3) that trends of a similar product that uses the same UAH coefficient are essentially identical to UAH and RSS. Based on the authors’ previous analysis and additional work here, UAH will continue using the NOAA-9 noise-reduction coefficient, as is, for version 5.4 and the follow-on version 5.5.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-12-00107.1</identifier><language>eng</language><subject>Marine</subject><ispartof>Journal of atmospheric and oceanic technology, 2013-05, Vol.30 (5), p.1006-1013</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-3685b0619e1a9d378a7fc5e33580ea4be1792820733d98f7d97b2922157a308b3</citedby><cites>FETCH-LOGICAL-c324t-3685b0619e1a9d378a7fc5e33580ea4be1792820733d98f7d97b2922157a308b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3682,27929,27930</link.rule.ids></links><search><creatorcontrib>Christy, John R.</creatorcontrib><creatorcontrib>Spencer, Roy W.</creatorcontrib><title>Comments on “A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit”</title><title>Journal of atmospheric and oceanic technology</title><description>Po-Chedley and Fu investigated the difference in the magnitude of global temperature trends generated from the Microwave Sounding Unit (MSU) for the midtroposphere (TMT, surface to about 75 hPa) between the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Their approach was to examine the magnitude of a noise-reduction coefficient of one short-lived satellite, NOAA-9, which differed from UAH and RSS. Using radiosonde comparisons over a 2-yr period, they calculated an adjustment to the UAH coefficient that, when applied to the UAH data, increased the UAH global TMT trend for 1979–2009 by +0.042 K decade−1, which then happens to agree with RSS’s TMT trend. In studying their analysis, the authors demonstrate 1) the adjustment calculated using radiosondes is inconclusive when errors are accounted for; 2) the adjustment was applied in a manner inconsistent with the UAH satellite merging strategy, creating a larger change than would be generated had the actual UAH methodology been followed; and 3) that trends of a similar product that uses the same UAH coefficient are essentially identical to UAH and RSS. Based on the authors’ previous analysis and additional work here, UAH will continue using the NOAA-9 noise-reduction coefficient, as is, for version 5.4 and the follow-on version 5.5.</description><subject>Marine</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkLtOwzAYhS0EEqXwAkweWVJ8SeJ4DGnLRYUOtGK0nMRpjRI72CmIrQ8CL9cnIW2Z_uX7js5_ALjGaIQxi26fFpPsIRgHmAQIYcRG-AQMcERQgEISn4IBYpQHKGLkHFx4_456iuJ4ANrMNo0ynYfWwN32J4V3WnqoDezWCj7rsnO2tb5dK6cLmK2lMaqGb9I1cCHdSnVwKovOur2-N17maRrwXiyc_ZKfCr7ajSm1WcGl0d1u-3sJzipZe3X1f4dgOZ0s-vKz-f1jls6CgpKwC2icRDmKMVdY8pKyRLKqiBSlUYKUDHOFGScJ6d-iJU8qVnKWE04IjpikKMnpENwcc1tnPzbKd6LRvlB1LY2yGy8wjVnIUUJpj5Ij2nf23qlKtE430n0LjMR-XnGYV4wFJuIwb2__AaLCbi4</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Christy, John R.</creator><creator>Spencer, Roy W.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20130501</creationdate><title>Comments on “A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit”</title><author>Christy, John R. ; Spencer, Roy W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-3685b0619e1a9d378a7fc5e33580ea4be1792820733d98f7d97b2922157a308b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Marine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christy, John R.</creatorcontrib><creatorcontrib>Spencer, Roy W.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christy, John R.</au><au>Spencer, Roy W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comments on “A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit”</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>30</volume><issue>5</issue><spage>1006</spage><epage>1013</epage><pages>1006-1013</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Po-Chedley and Fu investigated the difference in the magnitude of global temperature trends generated from the Microwave Sounding Unit (MSU) for the midtroposphere (TMT, surface to about 75 hPa) between the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Their approach was to examine the magnitude of a noise-reduction coefficient of one short-lived satellite, NOAA-9, which differed from UAH and RSS. Using radiosonde comparisons over a 2-yr period, they calculated an adjustment to the UAH coefficient that, when applied to the UAH data, increased the UAH global TMT trend for 1979–2009 by +0.042 K decade−1, which then happens to agree with RSS’s TMT trend. In studying their analysis, the authors demonstrate 1) the adjustment calculated using radiosondes is inconclusive when errors are accounted for; 2) the adjustment was applied in a manner inconsistent with the UAH satellite merging strategy, creating a larger change than would be generated had the actual UAH methodology been followed; and 3) that trends of a similar product that uses the same UAH coefficient are essentially identical to UAH and RSS. Based on the authors’ previous analysis and additional work here, UAH will continue using the NOAA-9 noise-reduction coefficient, as is, for version 5.4 and the follow-on version 5.5.</abstract><doi>10.1175/JTECH-D-12-00107.1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2013-05, Vol.30 (5), p.1006-1013
issn 0739-0572
1520-0426
language eng
recordid cdi_proquest_miscellaneous_1367490833
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Marine
title Comments on “A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit”
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T14%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comments%20on%20%E2%80%9CA%20Bias%20in%20the%20Midtropospheric%20Channel%20Warm%20Target%20Factor%20on%20the%20NOAA-9%20Microwave%20Sounding%20Unit%E2%80%9D&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Christy,%20John%20R.&rft.date=2013-05-01&rft.volume=30&rft.issue=5&rft.spage=1006&rft.epage=1013&rft.pages=1006-1013&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-12-00107.1&rft_dat=%3Cproquest_cross%3E1367490833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1367490833&rft_id=info:pmid/&rfr_iscdi=true