What has proteomics taught us about Leishmania development?

Leishmania are obligatory intracellular parasitic protozoa that cycle between sand fly mid-gut and phagolysosomes of mammalian macrophages. They have developed genetically programmed changes in gene and protein expression that enable rapid optimization of cell function according to vector and host e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parasitology 2012-08, Vol.139 (9), p.1146-1157
Hauptverfasser: TSIGANKOV, POLINA, GHERARDINI, PIER FEDERICO, HELMER-CITTERICH, MANUELA, ZILBERSTEIN, DAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1157
container_issue 9
container_start_page 1146
container_title Parasitology
container_volume 139
creator TSIGANKOV, POLINA
GHERARDINI, PIER FEDERICO
HELMER-CITTERICH, MANUELA
ZILBERSTEIN, DAN
description Leishmania are obligatory intracellular parasitic protozoa that cycle between sand fly mid-gut and phagolysosomes of mammalian macrophages. They have developed genetically programmed changes in gene and protein expression that enable rapid optimization of cell function according to vector and host environments. During the last two decades, host-free systems that mimic intra-lysosomal environments have been devised in which promastigotes differentiate into amastigotes axenically. These cultures have facilitated detailed investigation of the molecular mechanisms underlying Leishmania development inside its host. Axenic promastigotes and amastigotes have been subjected to transcriptome and proteomic analyses. Development had appeared somewhat variable but was revealed by proteomics to be strictly coordinated and regulated. Here we summarize the current understanding of Leishmania promastigote to amastigote differentiation, highlighting the data generated by proteomics.
doi_str_mv 10.1017/S0031182012000157
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1367487875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0031182012000157</cupid><sourcerecordid>1033455089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-a09dc92765a91e943f9cd404880ae64403406ce21d63ee06570fd2a8d876a8053</originalsourceid><addsrcrecordid>eNqN0Utr1UAUAOChKO219Qd0IwEpuImeeWQeuCiltCpccGGLy3Du5KQ3JY9rZiL47zuh6YOK4GoW5zuvOYwdc_jIgZtPPwAk51YAFwDAC7PHVlxpl1uu-Su2msP5HD9gb0K4TUZLLfbZgRBSOydhxT7_3GLMthiy3ThEGrrGhyzidLON2RQy3AxTzNbUhG2HfYNZRb-pHXYd9fH0iL2usQ30dnkP2fXlxdX513z9_cu387N17pXUMUdwlXfC6AIdJ6dk7XylQFkLSFopkAq0J8ErLYlAFwbqSqCtrNFooZCH7MN93TTir4lCLLsmeGpb7GmYQsmlNsoaa_6DgpSqKMC6RN-_oLfDNPZpkVkJp5XkIil-r_w4hDBSXe7GpsPxT0LlfITyryOknHdL5WnTUfWY8fDrCZwsAIPHth6x9014cloKZRRPTi7NsduMTXVDz2f8V_s7xXyaLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1032964312</pqid></control><display><type>article</type><title>What has proteomics taught us about Leishmania development?</title><source>MEDLINE</source><source>Cambridge University Press Journals Complete</source><creator>TSIGANKOV, POLINA ; GHERARDINI, PIER FEDERICO ; HELMER-CITTERICH, MANUELA ; ZILBERSTEIN, DAN</creator><creatorcontrib>TSIGANKOV, POLINA ; GHERARDINI, PIER FEDERICO ; HELMER-CITTERICH, MANUELA ; ZILBERSTEIN, DAN</creatorcontrib><description>Leishmania are obligatory intracellular parasitic protozoa that cycle between sand fly mid-gut and phagolysosomes of mammalian macrophages. They have developed genetically programmed changes in gene and protein expression that enable rapid optimization of cell function according to vector and host environments. During the last two decades, host-free systems that mimic intra-lysosomal environments have been devised in which promastigotes differentiate into amastigotes axenically. These cultures have facilitated detailed investigation of the molecular mechanisms underlying Leishmania development inside its host. Axenic promastigotes and amastigotes have been subjected to transcriptome and proteomic analyses. Development had appeared somewhat variable but was revealed by proteomics to be strictly coordinated and regulated. Here we summarize the current understanding of Leishmania promastigote to amastigote differentiation, highlighting the data generated by proteomics.</description><identifier>ISSN: 0031-1820</identifier><identifier>EISSN: 1469-8161</identifier><identifier>DOI: 10.1017/S0031182012000157</identifier><identifier>PMID: 22369930</identifier><identifier>CODEN: PARAAE</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adaptation, Physiological ; Animals ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; General aspects ; General aspects and techniques. Study of several systematic groups. Models ; Humans ; Insect Vectors - parasitology ; Invertebrates ; Leishmania ; Leishmania - genetics ; Leishmania - growth &amp; development ; Leishmania - metabolism ; Leishmaniasis - parasitology ; Life Cycle Stages ; Macrophages - parasitology ; Phagosomes - parasitology ; Proteomics - methods ; Protozoan Proteins - genetics ; Protozoan Proteins - metabolism ; Psychodidae - parasitology ; Signal Transduction</subject><ispartof>Parasitology, 2012-08, Vol.139 (9), p.1146-1157</ispartof><rights>Copyright © Cambridge University Press 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-a09dc92765a91e943f9cd404880ae64403406ce21d63ee06570fd2a8d876a8053</citedby><cites>FETCH-LOGICAL-c436t-a09dc92765a91e943f9cd404880ae64403406ce21d63ee06570fd2a8d876a8053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0031182012000157/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,309,310,314,780,784,789,790,23930,23931,25140,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26324741$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22369930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>TSIGANKOV, POLINA</creatorcontrib><creatorcontrib>GHERARDINI, PIER FEDERICO</creatorcontrib><creatorcontrib>HELMER-CITTERICH, MANUELA</creatorcontrib><creatorcontrib>ZILBERSTEIN, DAN</creatorcontrib><title>What has proteomics taught us about Leishmania development?</title><title>Parasitology</title><addtitle>Parasitology</addtitle><description>Leishmania are obligatory intracellular parasitic protozoa that cycle between sand fly mid-gut and phagolysosomes of mammalian macrophages. They have developed genetically programmed changes in gene and protein expression that enable rapid optimization of cell function according to vector and host environments. During the last two decades, host-free systems that mimic intra-lysosomal environments have been devised in which promastigotes differentiate into amastigotes axenically. These cultures have facilitated detailed investigation of the molecular mechanisms underlying Leishmania development inside its host. Axenic promastigotes and amastigotes have been subjected to transcriptome and proteomic analyses. Development had appeared somewhat variable but was revealed by proteomics to be strictly coordinated and regulated. Here we summarize the current understanding of Leishmania promastigote to amastigote differentiation, highlighting the data generated by proteomics.</description><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>General aspects</subject><subject>General aspects and techniques. Study of several systematic groups. Models</subject><subject>Humans</subject><subject>Insect Vectors - parasitology</subject><subject>Invertebrates</subject><subject>Leishmania</subject><subject>Leishmania - genetics</subject><subject>Leishmania - growth &amp; development</subject><subject>Leishmania - metabolism</subject><subject>Leishmaniasis - parasitology</subject><subject>Life Cycle Stages</subject><subject>Macrophages - parasitology</subject><subject>Phagosomes - parasitology</subject><subject>Proteomics - methods</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - metabolism</subject><subject>Psychodidae - parasitology</subject><subject>Signal Transduction</subject><issn>0031-1820</issn><issn>1469-8161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqN0Utr1UAUAOChKO219Qd0IwEpuImeeWQeuCiltCpccGGLy3Du5KQ3JY9rZiL47zuh6YOK4GoW5zuvOYwdc_jIgZtPPwAk51YAFwDAC7PHVlxpl1uu-Su2msP5HD9gb0K4TUZLLfbZgRBSOydhxT7_3GLMthiy3ThEGrrGhyzidLON2RQy3AxTzNbUhG2HfYNZRb-pHXYd9fH0iL2usQ30dnkP2fXlxdX513z9_cu387N17pXUMUdwlXfC6AIdJ6dk7XylQFkLSFopkAq0J8ErLYlAFwbqSqCtrNFooZCH7MN93TTir4lCLLsmeGpb7GmYQsmlNsoaa_6DgpSqKMC6RN-_oLfDNPZpkVkJp5XkIil-r_w4hDBSXe7GpsPxT0LlfITyryOknHdL5WnTUfWY8fDrCZwsAIPHth6x9014cloKZRRPTi7NsduMTXVDz2f8V_s7xXyaLw</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>TSIGANKOV, POLINA</creator><creator>GHERARDINI, PIER FEDERICO</creator><creator>HELMER-CITTERICH, MANUELA</creator><creator>ZILBERSTEIN, DAN</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>H98</scope><scope>L.G</scope></search><sort><creationdate>20120801</creationdate><title>What has proteomics taught us about Leishmania development?</title><author>TSIGANKOV, POLINA ; GHERARDINI, PIER FEDERICO ; HELMER-CITTERICH, MANUELA ; ZILBERSTEIN, DAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-a09dc92765a91e943f9cd404880ae64403406ce21d63ee06570fd2a8d876a8053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>General aspects</topic><topic>General aspects and techniques. Study of several systematic groups. Models</topic><topic>Humans</topic><topic>Insect Vectors - parasitology</topic><topic>Invertebrates</topic><topic>Leishmania</topic><topic>Leishmania - genetics</topic><topic>Leishmania - growth &amp; development</topic><topic>Leishmania - metabolism</topic><topic>Leishmaniasis - parasitology</topic><topic>Life Cycle Stages</topic><topic>Macrophages - parasitology</topic><topic>Phagosomes - parasitology</topic><topic>Proteomics - methods</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - metabolism</topic><topic>Psychodidae - parasitology</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TSIGANKOV, POLINA</creatorcontrib><creatorcontrib>GHERARDINI, PIER FEDERICO</creatorcontrib><creatorcontrib>HELMER-CITTERICH, MANUELA</creatorcontrib><creatorcontrib>ZILBERSTEIN, DAN</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Parasitology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TSIGANKOV, POLINA</au><au>GHERARDINI, PIER FEDERICO</au><au>HELMER-CITTERICH, MANUELA</au><au>ZILBERSTEIN, DAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What has proteomics taught us about Leishmania development?</atitle><jtitle>Parasitology</jtitle><addtitle>Parasitology</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>139</volume><issue>9</issue><spage>1146</spage><epage>1157</epage><pages>1146-1157</pages><issn>0031-1820</issn><eissn>1469-8161</eissn><coden>PARAAE</coden><abstract>Leishmania are obligatory intracellular parasitic protozoa that cycle between sand fly mid-gut and phagolysosomes of mammalian macrophages. They have developed genetically programmed changes in gene and protein expression that enable rapid optimization of cell function according to vector and host environments. During the last two decades, host-free systems that mimic intra-lysosomal environments have been devised in which promastigotes differentiate into amastigotes axenically. These cultures have facilitated detailed investigation of the molecular mechanisms underlying Leishmania development inside its host. Axenic promastigotes and amastigotes have been subjected to transcriptome and proteomic analyses. Development had appeared somewhat variable but was revealed by proteomics to be strictly coordinated and regulated. Here we summarize the current understanding of Leishmania promastigote to amastigote differentiation, highlighting the data generated by proteomics.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>22369930</pmid><doi>10.1017/S0031182012000157</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-1820
ispartof Parasitology, 2012-08, Vol.139 (9), p.1146-1157
issn 0031-1820
1469-8161
language eng
recordid cdi_proquest_miscellaneous_1367487875
source MEDLINE; Cambridge University Press Journals Complete
subjects Adaptation, Physiological
Animals
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling
Gene Expression Regulation, Developmental
General aspects
General aspects and techniques. Study of several systematic groups. Models
Humans
Insect Vectors - parasitology
Invertebrates
Leishmania
Leishmania - genetics
Leishmania - growth & development
Leishmania - metabolism
Leishmaniasis - parasitology
Life Cycle Stages
Macrophages - parasitology
Phagosomes - parasitology
Proteomics - methods
Protozoan Proteins - genetics
Protozoan Proteins - metabolism
Psychodidae - parasitology
Signal Transduction
title What has proteomics taught us about Leishmania development?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20has%20proteomics%20taught%20us%20about%20Leishmania%20development?&rft.jtitle=Parasitology&rft.au=TSIGANKOV,%20POLINA&rft.date=2012-08-01&rft.volume=139&rft.issue=9&rft.spage=1146&rft.epage=1157&rft.pages=1146-1157&rft.issn=0031-1820&rft.eissn=1469-8161&rft.coden=PARAAE&rft_id=info:doi/10.1017/S0031182012000157&rft_dat=%3Cproquest_cross%3E1033455089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1032964312&rft_id=info:pmid/22369930&rft_cupid=10_1017_S0031182012000157&rfr_iscdi=true