Impact of protist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfaces

Summary Barrier zones between oxic and anoxic water masses (redoxclines) host highly active prokaryotic communities with important roles in biogeochemical cycling. In Baltic Sea pelagic redoxclines, Epsilonproteobacteria of the genus Sulfurimonas (subgroup GD17) have been shown to dominate chemoauto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2013-05, Vol.15 (5), p.1580-1594
Hauptverfasser: Anderson, Ruth, Wylezich, Claudia, Glaubitz, Sabine, Labrenz, Matthias, Jürgens, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1594
container_issue 5
container_start_page 1580
container_title Environmental microbiology
container_volume 15
creator Anderson, Ruth
Wylezich, Claudia
Glaubitz, Sabine
Labrenz, Matthias
Jürgens, Klaus
description Summary Barrier zones between oxic and anoxic water masses (redoxclines) host highly active prokaryotic communities with important roles in biogeochemical cycling. In Baltic Sea pelagic redoxclines, Epsilonproteobacteria of the genus Sulfurimonas (subgroup GD17) have been shown to dominate chemoautotrophic denitrification. However, little is known on the loss processes affecting this prokaryotic group. In the present study, the protist grazing impact on the Sulfurimonas subgroup GD17 was determined for suboxic and oxygen/hydrogen sulphide interface depths of Baltic Sea redoxclines, using predator exclusion assays and bacterial amendment with the cultured representative ‘Sulfurimonas gotlandica’ strain GD1. Additionally, the principal bacterivores were identified by RNA‐Stable Isotope Probing (RNA‐SIP). The natural Sulfurimonas subgroup GD17 population grew strongly under oxygen/hydrogen sulphide interface conditions (doubling time: 1–1.5 days), but protist grazing could consume the complete new cell production per day. In suboxic samples, little or no growth of Sulfurimonas subgroup GD17 was observed. RNA‐SIP identified five active grazers, belonging to typical redoxcline ciliates (Oligohymenophorea, Prostomatea) and globally widespread marine flagellate groups (MAST‐4, Chrysophyta, Cercozoa). Overall, we demonstrate for the first time that protist grazing can control the growth, and potentially the vertical distribution, of a chemolithoautotrophic key‐player of oxic/anoxic interfaces.
doi_str_mv 10.1111/1462-2920.12078
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1367486345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1367486345</sourcerecordid><originalsourceid>FETCH-LOGICAL-i4228-2a3993a187d636a4865acf0ddd0dea89a2b7262894470bdf50e164751a23ff313</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi1ERUvhzA1Z4sIl1F-xnSOUUlZqi6oWIXGxJo6zuE3iNB-i21_PpFv2wAlfPPY870ijh5A3nH3geI640iIThcCnYMY-Iwe7n-e7mot98nIcbxjjRhr2guwLKbVVXB6Qh1Xbg59oqmk_pCmOE10P8BC7NU0dBXobNrREIAwRGmyluad1GmgZ0zok_yu00WPDb3yzZGJHP0EzRU-vAtA-NLDGOt1HfwTdciGBs2rwYXxF9mpoxvD66T4k37-cXB9_zc6-na6OP55lUQlhMwGyKCRwayotNSirc_A1q6qKVQFsAaI0QgtbKGVYWdU5C1wrk3MQsq4ll4fk_XYuLng3h3FybRx9aBroQppHx6U2OFWq_D9QyZk1nDNE3_2D3qR56HARpIQVXComkHr7RM1lGyrXD7GFYeP-CkAg3wK_YxM2uz5nbvHrFoNuseke_bqT89Vjgblsm0Nj4X6Xg-HWaZScux8Xp05-Npf55YVxP-UfrpOkvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1328213402</pqid></control><display><type>article</type><title>Impact of protist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfaces</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Anderson, Ruth ; Wylezich, Claudia ; Glaubitz, Sabine ; Labrenz, Matthias ; Jürgens, Klaus</creator><creatorcontrib>Anderson, Ruth ; Wylezich, Claudia ; Glaubitz, Sabine ; Labrenz, Matthias ; Jürgens, Klaus</creatorcontrib><description>Summary Barrier zones between oxic and anoxic water masses (redoxclines) host highly active prokaryotic communities with important roles in biogeochemical cycling. In Baltic Sea pelagic redoxclines, Epsilonproteobacteria of the genus Sulfurimonas (subgroup GD17) have been shown to dominate chemoautotrophic denitrification. However, little is known on the loss processes affecting this prokaryotic group. In the present study, the protist grazing impact on the Sulfurimonas subgroup GD17 was determined for suboxic and oxygen/hydrogen sulphide interface depths of Baltic Sea redoxclines, using predator exclusion assays and bacterial amendment with the cultured representative ‘Sulfurimonas gotlandica’ strain GD1. Additionally, the principal bacterivores were identified by RNA‐Stable Isotope Probing (RNA‐SIP). The natural Sulfurimonas subgroup GD17 population grew strongly under oxygen/hydrogen sulphide interface conditions (doubling time: 1–1.5 days), but protist grazing could consume the complete new cell production per day. In suboxic samples, little or no growth of Sulfurimonas subgroup GD17 was observed. RNA‐SIP identified five active grazers, belonging to typical redoxcline ciliates (Oligohymenophorea, Prostomatea) and globally widespread marine flagellate groups (MAST‐4, Chrysophyta, Cercozoa). Overall, we demonstrate for the first time that protist grazing can control the growth, and potentially the vertical distribution, of a chemolithoautotrophic key‐player of oxic/anoxic interfaces.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.12078</identifier><identifier>PMID: 23368413</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacteria ; Chrysophyta ; Chrysophyta - classification ; Chrysophyta - genetics ; Chrysophyta - metabolism ; Ciliophora - classification ; Ciliophora - genetics ; Ciliophora - metabolism ; DNA Fingerprinting ; Epsilonproteobacteria - growth &amp; development ; Epsilonproteobacteria - metabolism ; Epsilonproteobacteria - physiology ; Oceans and Seas ; Phylogeny ; Seawater - chemistry ; Seawater - microbiology ; Water Microbiology</subject><ispartof>Environmental microbiology, 2013-05, Vol.15 (5), p.1580-1594</ispartof><rights>2013 Society for Applied Microbiology and Blackwell Publishing Ltd</rights><rights>2013 Society for Applied Microbiology and Blackwell Publishing Ltd.</rights><rights>Copyright © 2013 Society for Applied Microbiology and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.12078$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.12078$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23368413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Ruth</creatorcontrib><creatorcontrib>Wylezich, Claudia</creatorcontrib><creatorcontrib>Glaubitz, Sabine</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><creatorcontrib>Jürgens, Klaus</creatorcontrib><title>Impact of protist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfaces</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Barrier zones between oxic and anoxic water masses (redoxclines) host highly active prokaryotic communities with important roles in biogeochemical cycling. In Baltic Sea pelagic redoxclines, Epsilonproteobacteria of the genus Sulfurimonas (subgroup GD17) have been shown to dominate chemoautotrophic denitrification. However, little is known on the loss processes affecting this prokaryotic group. In the present study, the protist grazing impact on the Sulfurimonas subgroup GD17 was determined for suboxic and oxygen/hydrogen sulphide interface depths of Baltic Sea redoxclines, using predator exclusion assays and bacterial amendment with the cultured representative ‘Sulfurimonas gotlandica’ strain GD1. Additionally, the principal bacterivores were identified by RNA‐Stable Isotope Probing (RNA‐SIP). The natural Sulfurimonas subgroup GD17 population grew strongly under oxygen/hydrogen sulphide interface conditions (doubling time: 1–1.5 days), but protist grazing could consume the complete new cell production per day. In suboxic samples, little or no growth of Sulfurimonas subgroup GD17 was observed. RNA‐SIP identified five active grazers, belonging to typical redoxcline ciliates (Oligohymenophorea, Prostomatea) and globally widespread marine flagellate groups (MAST‐4, Chrysophyta, Cercozoa). Overall, we demonstrate for the first time that protist grazing can control the growth, and potentially the vertical distribution, of a chemolithoautotrophic key‐player of oxic/anoxic interfaces.</description><subject>Bacteria</subject><subject>Chrysophyta</subject><subject>Chrysophyta - classification</subject><subject>Chrysophyta - genetics</subject><subject>Chrysophyta - metabolism</subject><subject>Ciliophora - classification</subject><subject>Ciliophora - genetics</subject><subject>Ciliophora - metabolism</subject><subject>DNA Fingerprinting</subject><subject>Epsilonproteobacteria - growth &amp; development</subject><subject>Epsilonproteobacteria - metabolism</subject><subject>Epsilonproteobacteria - physiology</subject><subject>Oceans and Seas</subject><subject>Phylogeny</subject><subject>Seawater - chemistry</subject><subject>Seawater - microbiology</subject><subject>Water Microbiology</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi1ERUvhzA1Z4sIl1F-xnSOUUlZqi6oWIXGxJo6zuE3iNB-i21_PpFv2wAlfPPY870ijh5A3nH3geI640iIThcCnYMY-Iwe7n-e7mot98nIcbxjjRhr2guwLKbVVXB6Qh1Xbg59oqmk_pCmOE10P8BC7NU0dBXobNrREIAwRGmyluad1GmgZ0zok_yu00WPDb3yzZGJHP0EzRU-vAtA-NLDGOt1HfwTdciGBs2rwYXxF9mpoxvD66T4k37-cXB9_zc6-na6OP55lUQlhMwGyKCRwayotNSirc_A1q6qKVQFsAaI0QgtbKGVYWdU5C1wrk3MQsq4ll4fk_XYuLng3h3FybRx9aBroQppHx6U2OFWq_D9QyZk1nDNE3_2D3qR56HARpIQVXComkHr7RM1lGyrXD7GFYeP-CkAg3wK_YxM2uz5nbvHrFoNuseke_bqT89Vjgblsm0Nj4X6Xg-HWaZScux8Xp05-Npf55YVxP-UfrpOkvg</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Anderson, Ruth</creator><creator>Wylezich, Claudia</creator><creator>Glaubitz, Sabine</creator><creator>Labrenz, Matthias</creator><creator>Jürgens, Klaus</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201305</creationdate><title>Impact of protist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfaces</title><author>Anderson, Ruth ; Wylezich, Claudia ; Glaubitz, Sabine ; Labrenz, Matthias ; Jürgens, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i4228-2a3993a187d636a4865acf0ddd0dea89a2b7262894470bdf50e164751a23ff313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bacteria</topic><topic>Chrysophyta</topic><topic>Chrysophyta - classification</topic><topic>Chrysophyta - genetics</topic><topic>Chrysophyta - metabolism</topic><topic>Ciliophora - classification</topic><topic>Ciliophora - genetics</topic><topic>Ciliophora - metabolism</topic><topic>DNA Fingerprinting</topic><topic>Epsilonproteobacteria - growth &amp; development</topic><topic>Epsilonproteobacteria - metabolism</topic><topic>Epsilonproteobacteria - physiology</topic><topic>Oceans and Seas</topic><topic>Phylogeny</topic><topic>Seawater - chemistry</topic><topic>Seawater - microbiology</topic><topic>Water Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Ruth</creatorcontrib><creatorcontrib>Wylezich, Claudia</creatorcontrib><creatorcontrib>Glaubitz, Sabine</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><creatorcontrib>Jürgens, Klaus</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Ruth</au><au>Wylezich, Claudia</au><au>Glaubitz, Sabine</au><au>Labrenz, Matthias</au><au>Jürgens, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of protist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfaces</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2013-05</date><risdate>2013</risdate><volume>15</volume><issue>5</issue><spage>1580</spage><epage>1594</epage><pages>1580-1594</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Barrier zones between oxic and anoxic water masses (redoxclines) host highly active prokaryotic communities with important roles in biogeochemical cycling. In Baltic Sea pelagic redoxclines, Epsilonproteobacteria of the genus Sulfurimonas (subgroup GD17) have been shown to dominate chemoautotrophic denitrification. However, little is known on the loss processes affecting this prokaryotic group. In the present study, the protist grazing impact on the Sulfurimonas subgroup GD17 was determined for suboxic and oxygen/hydrogen sulphide interface depths of Baltic Sea redoxclines, using predator exclusion assays and bacterial amendment with the cultured representative ‘Sulfurimonas gotlandica’ strain GD1. Additionally, the principal bacterivores were identified by RNA‐Stable Isotope Probing (RNA‐SIP). The natural Sulfurimonas subgroup GD17 population grew strongly under oxygen/hydrogen sulphide interface conditions (doubling time: 1–1.5 days), but protist grazing could consume the complete new cell production per day. In suboxic samples, little or no growth of Sulfurimonas subgroup GD17 was observed. RNA‐SIP identified five active grazers, belonging to typical redoxcline ciliates (Oligohymenophorea, Prostomatea) and globally widespread marine flagellate groups (MAST‐4, Chrysophyta, Cercozoa). Overall, we demonstrate for the first time that protist grazing can control the growth, and potentially the vertical distribution, of a chemolithoautotrophic key‐player of oxic/anoxic interfaces.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23368413</pmid><doi>10.1111/1462-2920.12078</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2013-05, Vol.15 (5), p.1580-1594
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_1367486345
source MEDLINE; Wiley Online Library All Journals
subjects Bacteria
Chrysophyta
Chrysophyta - classification
Chrysophyta - genetics
Chrysophyta - metabolism
Ciliophora - classification
Ciliophora - genetics
Ciliophora - metabolism
DNA Fingerprinting
Epsilonproteobacteria - growth & development
Epsilonproteobacteria - metabolism
Epsilonproteobacteria - physiology
Oceans and Seas
Phylogeny
Seawater - chemistry
Seawater - microbiology
Water Microbiology
title Impact of protist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20protist%20grazing%20on%20a%20key%20bacterial%20group%20for%20biogeochemical%20cycling%20in%20Baltic%20Sea%20pelagic%20oxic/anoxic%20interfaces&rft.jtitle=Environmental%20microbiology&rft.au=Anderson,%20Ruth&rft.date=2013-05&rft.volume=15&rft.issue=5&rft.spage=1580&rft.epage=1594&rft.pages=1580-1594&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.12078&rft_dat=%3Cproquest_pubme%3E1367486345%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1328213402&rft_id=info:pmid/23368413&rfr_iscdi=true