Transcriptional regulation of aquaporin-3 in human retinal pigment epithelial cells

The expression of aquaporin (AQP) water channels may influence the development of retinal edema. We investigated the transcriptional regulation of AQP3 in cultured human retinal pigment epithelial (RPE) cells. As shown by RT-PCR and immunocytochemistry, cultured RPE cells express AQP3 mRNA and prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2012-08, Vol.39 (8), p.7949-7956
Hauptverfasser: Hollborn, Margrit, Ulbricht, Elke, Reichenbach, Andreas, Wiedemann, Peter, Bringmann, Andreas, Kohen, Leon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7956
container_issue 8
container_start_page 7949
container_title Molecular biology reports
container_volume 39
creator Hollborn, Margrit
Ulbricht, Elke
Reichenbach, Andreas
Wiedemann, Peter
Bringmann, Andreas
Kohen, Leon
description The expression of aquaporin (AQP) water channels may influence the development of retinal edema. We investigated the transcriptional regulation of AQP3 in cultured human retinal pigment epithelial (RPE) cells. As shown by RT-PCR and immunocytochemistry, cultured RPE cells express AQP3 mRNA and protein. The AQP3 mRNA level in RPE cells was elevated under the following conditions: chemical hypoxia induced by CoCl 2 , hyperosmolarity induced by 100 mM NaCl, and upon stimulation of the cultures with PDGF, arachidonic acid, prostaglandin E 2 , and blood serum, respectively. Chemical hypoxia increased AQP3 gene expression through MEK/ERK and JNK activation. The hyperosmolarity-, PDGF-, and serum-induced upregulation of AQP3 was prevented by inhibition of the phospholipase A 2 , but not by inhibition of the cyclooxygenase. Triamcinolone acetonide prevented the upregulation of AQP3 induced by arachidonic acid and prostaglandin E 2 , but not by the other factors tested. It is concluded that AQP3 is transcriptionally activated in RPE cells by various pathogenic factors involved in the development of retinal edema in situ. Activation of phospholipase A 2 is a critical factor which induces AQP3 in RPE cells.
doi_str_mv 10.1007/s11033-012-1640-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1367482722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022558223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-1dee6937a0e99467c1c497581251d07d347e0196ac8371b8d81d8c5f8b93ec2c3</originalsourceid><addsrcrecordid>eNqF0ctKAzEUBuAgiq2XB3AjA27cRHNymWSWUrxBwYV1PaSZtE2ZW5MZqG9vhlERQVyFJF9OTvIjdAHkBgiRtwGAMIYJUAwpJ3h_gKYgJMM8k-oQTQkjgLkSMEEnIWwJIRykOEYTSgUTjLIpel14XQfjXdu5ptZl4u26L_UwSZpVone9bhvvaswSVyebvtJ1JJ0baOvWla27xLau29jSxSVjyzKcoaOVLoM9_xxP0dvD_WL2hOcvj8-zuzk2XEKHobA2zZjUxGYZT6UBE_sWCqiAgsiCcWkJZKk2iklYqkJBoYxYqWXGrKGGnaLrsW7rm11vQ5dXLgwd6No2fciBpZIrKin9n5L4JUJFGenVL7pteh_fOyrKRew-KhiV8U0I3q7y1rtK-_eI8iGcfAwnj-HkQzj5Pp65_KzcLytbfJ_4SiMCOoIQt-q19T-v_qvqB1FBmPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022245471</pqid></control><display><type>article</type><title>Transcriptional regulation of aquaporin-3 in human retinal pigment epithelial cells</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Hollborn, Margrit ; Ulbricht, Elke ; Reichenbach, Andreas ; Wiedemann, Peter ; Bringmann, Andreas ; Kohen, Leon</creator><creatorcontrib>Hollborn, Margrit ; Ulbricht, Elke ; Reichenbach, Andreas ; Wiedemann, Peter ; Bringmann, Andreas ; Kohen, Leon</creatorcontrib><description>The expression of aquaporin (AQP) water channels may influence the development of retinal edema. We investigated the transcriptional regulation of AQP3 in cultured human retinal pigment epithelial (RPE) cells. As shown by RT-PCR and immunocytochemistry, cultured RPE cells express AQP3 mRNA and protein. The AQP3 mRNA level in RPE cells was elevated under the following conditions: chemical hypoxia induced by CoCl 2 , hyperosmolarity induced by 100 mM NaCl, and upon stimulation of the cultures with PDGF, arachidonic acid, prostaglandin E 2 , and blood serum, respectively. Chemical hypoxia increased AQP3 gene expression through MEK/ERK and JNK activation. The hyperosmolarity-, PDGF-, and serum-induced upregulation of AQP3 was prevented by inhibition of the phospholipase A 2 , but not by inhibition of the cyclooxygenase. Triamcinolone acetonide prevented the upregulation of AQP3 induced by arachidonic acid and prostaglandin E 2 , but not by the other factors tested. It is concluded that AQP3 is transcriptionally activated in RPE cells by various pathogenic factors involved in the development of retinal edema in situ. Activation of phospholipase A 2 is a critical factor which induces AQP3 in RPE cells.</description><identifier>ISSN: 0301-4851</identifier><identifier>EISSN: 1573-4978</identifier><identifier>DOI: 10.1007/s11033-012-1640-x</identifier><identifier>PMID: 22535323</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal Anatomy ; Animal Biochemistry ; Aquaporin 3 - genetics ; Aquaporin 3 - metabolism ; Biomedical and Life Sciences ; Cell Hypoxia - genetics ; Cells, Cultured ; Epithelial Cells - metabolism ; Gene expression ; Gene Expression Regulation ; Histology ; Humans ; Hypoxia ; Life Sciences ; Molecular biology ; Morphology ; Oxidative Stress ; Phospholipases A2 - metabolism ; Pigments ; Prostaglandin-Endoperoxide Synthases - metabolism ; Retina ; Retinal Pigment Epithelium - metabolism ; Transcription, Genetic</subject><ispartof>Molecular biology reports, 2012-08, Vol.39 (8), p.7949-7956</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-1dee6937a0e99467c1c497581251d07d347e0196ac8371b8d81d8c5f8b93ec2c3</citedby><cites>FETCH-LOGICAL-c471t-1dee6937a0e99467c1c497581251d07d347e0196ac8371b8d81d8c5f8b93ec2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11033-012-1640-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11033-012-1640-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22535323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hollborn, Margrit</creatorcontrib><creatorcontrib>Ulbricht, Elke</creatorcontrib><creatorcontrib>Reichenbach, Andreas</creatorcontrib><creatorcontrib>Wiedemann, Peter</creatorcontrib><creatorcontrib>Bringmann, Andreas</creatorcontrib><creatorcontrib>Kohen, Leon</creatorcontrib><title>Transcriptional regulation of aquaporin-3 in human retinal pigment epithelial cells</title><title>Molecular biology reports</title><addtitle>Mol Biol Rep</addtitle><addtitle>Mol Biol Rep</addtitle><description>The expression of aquaporin (AQP) water channels may influence the development of retinal edema. We investigated the transcriptional regulation of AQP3 in cultured human retinal pigment epithelial (RPE) cells. As shown by RT-PCR and immunocytochemistry, cultured RPE cells express AQP3 mRNA and protein. The AQP3 mRNA level in RPE cells was elevated under the following conditions: chemical hypoxia induced by CoCl 2 , hyperosmolarity induced by 100 mM NaCl, and upon stimulation of the cultures with PDGF, arachidonic acid, prostaglandin E 2 , and blood serum, respectively. Chemical hypoxia increased AQP3 gene expression through MEK/ERK and JNK activation. The hyperosmolarity-, PDGF-, and serum-induced upregulation of AQP3 was prevented by inhibition of the phospholipase A 2 , but not by inhibition of the cyclooxygenase. Triamcinolone acetonide prevented the upregulation of AQP3 induced by arachidonic acid and prostaglandin E 2 , but not by the other factors tested. It is concluded that AQP3 is transcriptionally activated in RPE cells by various pathogenic factors involved in the development of retinal edema in situ. Activation of phospholipase A 2 is a critical factor which induces AQP3 in RPE cells.</description><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Aquaporin 3 - genetics</subject><subject>Aquaporin 3 - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Hypoxia - genetics</subject><subject>Cells, Cultured</subject><subject>Epithelial Cells - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Histology</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Life Sciences</subject><subject>Molecular biology</subject><subject>Morphology</subject><subject>Oxidative Stress</subject><subject>Phospholipases A2 - metabolism</subject><subject>Pigments</subject><subject>Prostaglandin-Endoperoxide Synthases - metabolism</subject><subject>Retina</subject><subject>Retinal Pigment Epithelium - metabolism</subject><subject>Transcription, Genetic</subject><issn>0301-4851</issn><issn>1573-4978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0ctKAzEUBuAgiq2XB3AjA27cRHNymWSWUrxBwYV1PaSZtE2ZW5MZqG9vhlERQVyFJF9OTvIjdAHkBgiRtwGAMIYJUAwpJ3h_gKYgJMM8k-oQTQkjgLkSMEEnIWwJIRykOEYTSgUTjLIpel14XQfjXdu5ptZl4u26L_UwSZpVone9bhvvaswSVyebvtJ1JJ0baOvWla27xLau29jSxSVjyzKcoaOVLoM9_xxP0dvD_WL2hOcvj8-zuzk2XEKHobA2zZjUxGYZT6UBE_sWCqiAgsiCcWkJZKk2iklYqkJBoYxYqWXGrKGGnaLrsW7rm11vQ5dXLgwd6No2fciBpZIrKin9n5L4JUJFGenVL7pteh_fOyrKRew-KhiV8U0I3q7y1rtK-_eI8iGcfAwnj-HkQzj5Pp65_KzcLytbfJ_4SiMCOoIQt-q19T-v_qvqB1FBmPA</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Hollborn, Margrit</creator><creator>Ulbricht, Elke</creator><creator>Reichenbach, Andreas</creator><creator>Wiedemann, Peter</creator><creator>Bringmann, Andreas</creator><creator>Kohen, Leon</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>Transcriptional regulation of aquaporin-3 in human retinal pigment epithelial cells</title><author>Hollborn, Margrit ; Ulbricht, Elke ; Reichenbach, Andreas ; Wiedemann, Peter ; Bringmann, Andreas ; Kohen, Leon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-1dee6937a0e99467c1c497581251d07d347e0196ac8371b8d81d8c5f8b93ec2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Aquaporin 3 - genetics</topic><topic>Aquaporin 3 - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Hypoxia - genetics</topic><topic>Cells, Cultured</topic><topic>Epithelial Cells - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Histology</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Life Sciences</topic><topic>Molecular biology</topic><topic>Morphology</topic><topic>Oxidative Stress</topic><topic>Phospholipases A2 - metabolism</topic><topic>Pigments</topic><topic>Prostaglandin-Endoperoxide Synthases - metabolism</topic><topic>Retina</topic><topic>Retinal Pigment Epithelium - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hollborn, Margrit</creatorcontrib><creatorcontrib>Ulbricht, Elke</creatorcontrib><creatorcontrib>Reichenbach, Andreas</creatorcontrib><creatorcontrib>Wiedemann, Peter</creatorcontrib><creatorcontrib>Bringmann, Andreas</creatorcontrib><creatorcontrib>Kohen, Leon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hollborn, Margrit</au><au>Ulbricht, Elke</au><au>Reichenbach, Andreas</au><au>Wiedemann, Peter</au><au>Bringmann, Andreas</au><au>Kohen, Leon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional regulation of aquaporin-3 in human retinal pigment epithelial cells</atitle><jtitle>Molecular biology reports</jtitle><stitle>Mol Biol Rep</stitle><addtitle>Mol Biol Rep</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>39</volume><issue>8</issue><spage>7949</spage><epage>7956</epage><pages>7949-7956</pages><issn>0301-4851</issn><eissn>1573-4978</eissn><abstract>The expression of aquaporin (AQP) water channels may influence the development of retinal edema. We investigated the transcriptional regulation of AQP3 in cultured human retinal pigment epithelial (RPE) cells. As shown by RT-PCR and immunocytochemistry, cultured RPE cells express AQP3 mRNA and protein. The AQP3 mRNA level in RPE cells was elevated under the following conditions: chemical hypoxia induced by CoCl 2 , hyperosmolarity induced by 100 mM NaCl, and upon stimulation of the cultures with PDGF, arachidonic acid, prostaglandin E 2 , and blood serum, respectively. Chemical hypoxia increased AQP3 gene expression through MEK/ERK and JNK activation. The hyperosmolarity-, PDGF-, and serum-induced upregulation of AQP3 was prevented by inhibition of the phospholipase A 2 , but not by inhibition of the cyclooxygenase. Triamcinolone acetonide prevented the upregulation of AQP3 induced by arachidonic acid and prostaglandin E 2 , but not by the other factors tested. It is concluded that AQP3 is transcriptionally activated in RPE cells by various pathogenic factors involved in the development of retinal edema in situ. Activation of phospholipase A 2 is a critical factor which induces AQP3 in RPE cells.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>22535323</pmid><doi>10.1007/s11033-012-1640-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-4851
ispartof Molecular biology reports, 2012-08, Vol.39 (8), p.7949-7956
issn 0301-4851
1573-4978
language eng
recordid cdi_proquest_miscellaneous_1367482722
source MEDLINE; SpringerNature Journals
subjects Animal Anatomy
Animal Biochemistry
Aquaporin 3 - genetics
Aquaporin 3 - metabolism
Biomedical and Life Sciences
Cell Hypoxia - genetics
Cells, Cultured
Epithelial Cells - metabolism
Gene expression
Gene Expression Regulation
Histology
Humans
Hypoxia
Life Sciences
Molecular biology
Morphology
Oxidative Stress
Phospholipases A2 - metabolism
Pigments
Prostaglandin-Endoperoxide Synthases - metabolism
Retina
Retinal Pigment Epithelium - metabolism
Transcription, Genetic
title Transcriptional regulation of aquaporin-3 in human retinal pigment epithelial cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T07%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20regulation%20of%20aquaporin-3%20in%20human%20retinal%20pigment%20epithelial%20cells&rft.jtitle=Molecular%20biology%20reports&rft.au=Hollborn,%20Margrit&rft.date=2012-08-01&rft.volume=39&rft.issue=8&rft.spage=7949&rft.epage=7956&rft.pages=7949-7956&rft.issn=0301-4851&rft.eissn=1573-4978&rft_id=info:doi/10.1007/s11033-012-1640-x&rft_dat=%3Cproquest_cross%3E1022558223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022245471&rft_id=info:pmid/22535323&rfr_iscdi=true