Obesity and fast food in urban markets: a new approach using geo-referenced micro data

ABSTRACT This paper presents a new method of assessing the relationship between features of the built environment and obesity, particularly in urban areas. Our empirical application combines georeferenced data on the location of fast‐food restaurants with data about personal health, behavioral, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health economics 2013-07, Vol.22 (7), p.835-856
Hauptverfasser: Chen, Susan Elizabeth, Florax, Raymond J., Snyder, Samantha D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 856
container_issue 7
container_start_page 835
container_title Health economics
container_volume 22
creator Chen, Susan Elizabeth
Florax, Raymond J.
Snyder, Samantha D.
description ABSTRACT This paper presents a new method of assessing the relationship between features of the built environment and obesity, particularly in urban areas. Our empirical application combines georeferenced data on the location of fast‐food restaurants with data about personal health, behavioral, and neighborhood characteristics. We define a ‘local food environment’ for every individual utilizing buffers around a person's home address. Individual food landscapes are potentially endogenous because of spatial sorting of the population and food outlets, and the body mass index (BMI) values for individuals living close to each other are likely to be spatially correlated because of observed and unobserved individual and neighborhood effects. The potential biases associated with endogeneity and spatial correlation are handled using spatial econometric estimation techniques. Our application provides quantitative estimates of the effect of proximity to fast‐food restaurants on obesity in an urban food market. We also present estimates of a policy simulation that focuses on reducing the density of fast‐food restaurants in urban areas. In the simulations, we account for spatial heterogeneity in both the policy instruments and individual neighborhoods and find a small effect for the hypothesized relationships between individual BMI values and the density of fast‐food restaurants. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/hec.2863
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365989610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2998657221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5173-7109041fe336a1e4214bea20d62f5f4652c3ae596e925bb99ad767d129f3b4b23</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMoTqfgL5CAN9505qNJFu9kzE2YjoFO2E1I29Otc2tn0zL3783YnCB4dQLn4eU9TxC6oqRFCWF3M4hbrC35ETqjROuAEkGOt2-hAs04aaBz5-aE-B2Rp6jBmKZUK3WGxsMIXFZtsM0TnFpX4bQoEpzluC4jm-OlLT-gcvfY4hzW2K5WZWHjGa5dlk_xFIqghBRKyGNI8DKLywIntrIX6CS1CweX-9lEb4_d104_GAx7T52HQRALqnigfFsS0hQ4l5ZCyGgYgWUkkSwVaSgFi7kFoSVoJqJIa5soqRLKdMqjMGK8iW53ub7WZw2uMsvMxbBY2ByK2hnKpdBtLSnx6M0fdF7UZe7bbam2p6iiv4H-Euf8bWZVZl7CxlBitq6Nd222rj16vQ-soyUkB_BHrgeCHbDOFrD5N8j0u5194J7PXAVfB97_gJGKK2HeX3pmMJqMJ6PnieH8G013lS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1368989171</pqid></control><display><type>article</type><title>Obesity and fast food in urban markets: a new approach using geo-referenced micro data</title><source>MEDLINE</source><source>Wiley Journals</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Chen, Susan Elizabeth ; Florax, Raymond J. ; Snyder, Samantha D.</creator><creatorcontrib>Chen, Susan Elizabeth ; Florax, Raymond J. ; Snyder, Samantha D.</creatorcontrib><description>ABSTRACT This paper presents a new method of assessing the relationship between features of the built environment and obesity, particularly in urban areas. Our empirical application combines georeferenced data on the location of fast‐food restaurants with data about personal health, behavioral, and neighborhood characteristics. We define a ‘local food environment’ for every individual utilizing buffers around a person's home address. Individual food landscapes are potentially endogenous because of spatial sorting of the population and food outlets, and the body mass index (BMI) values for individuals living close to each other are likely to be spatially correlated because of observed and unobserved individual and neighborhood effects. The potential biases associated with endogeneity and spatial correlation are handled using spatial econometric estimation techniques. Our application provides quantitative estimates of the effect of proximity to fast‐food restaurants on obesity in an urban food market. We also present estimates of a policy simulation that focuses on reducing the density of fast‐food restaurants in urban areas. In the simulations, we account for spatial heterogeneity in both the policy instruments and individual neighborhoods and find a small effect for the hypothesized relationships between individual BMI values and the density of fast‐food restaurants. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1057-9230</identifier><identifier>EISSN: 1099-1050</identifier><identifier>DOI: 10.1002/hec.2863</identifier><identifier>PMID: 22911977</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adult ; Aged ; Body mass index ; Correlation analysis ; Econometrics ; Environment Design ; fast food ; Fast food industry ; Fast Foods - statistics &amp; numerical data ; Female ; Food ; Food Supply - economics ; Food Supply - statistics &amp; numerical data ; Health care policy ; Health economics ; Humans ; Indiana - epidemiology ; Least-Squares Analysis ; Male ; Middle Aged ; Models, Econometric ; Obesity ; Obesity - economics ; Obesity - epidemiology ; Overweight - economics ; Overweight - epidemiology ; Residence Characteristics - statistics &amp; numerical data ; Restaurants ; spatial econometrics ; Studies ; Urban areas ; Urban Population - statistics &amp; numerical data ; Young Adult</subject><ispartof>Health economics, 2013-07, Vol.22 (7), p.835-856</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Periodicals Inc. Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5173-7109041fe336a1e4214bea20d62f5f4652c3ae596e925bb99ad767d129f3b4b23</citedby><cites>FETCH-LOGICAL-c5173-7109041fe336a1e4214bea20d62f5f4652c3ae596e925bb99ad767d129f3b4b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhec.2863$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhec.2863$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,30999,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22911977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Susan Elizabeth</creatorcontrib><creatorcontrib>Florax, Raymond J.</creatorcontrib><creatorcontrib>Snyder, Samantha D.</creatorcontrib><title>Obesity and fast food in urban markets: a new approach using geo-referenced micro data</title><title>Health economics</title><addtitle>Health Econ</addtitle><description>ABSTRACT This paper presents a new method of assessing the relationship between features of the built environment and obesity, particularly in urban areas. Our empirical application combines georeferenced data on the location of fast‐food restaurants with data about personal health, behavioral, and neighborhood characteristics. We define a ‘local food environment’ for every individual utilizing buffers around a person's home address. Individual food landscapes are potentially endogenous because of spatial sorting of the population and food outlets, and the body mass index (BMI) values for individuals living close to each other are likely to be spatially correlated because of observed and unobserved individual and neighborhood effects. The potential biases associated with endogeneity and spatial correlation are handled using spatial econometric estimation techniques. Our application provides quantitative estimates of the effect of proximity to fast‐food restaurants on obesity in an urban food market. We also present estimates of a policy simulation that focuses on reducing the density of fast‐food restaurants in urban areas. In the simulations, we account for spatial heterogeneity in both the policy instruments and individual neighborhoods and find a small effect for the hypothesized relationships between individual BMI values and the density of fast‐food restaurants. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>Adult</subject><subject>Aged</subject><subject>Body mass index</subject><subject>Correlation analysis</subject><subject>Econometrics</subject><subject>Environment Design</subject><subject>fast food</subject><subject>Fast food industry</subject><subject>Fast Foods - statistics &amp; numerical data</subject><subject>Female</subject><subject>Food</subject><subject>Food Supply - economics</subject><subject>Food Supply - statistics &amp; numerical data</subject><subject>Health care policy</subject><subject>Health economics</subject><subject>Humans</subject><subject>Indiana - epidemiology</subject><subject>Least-Squares Analysis</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Econometric</subject><subject>Obesity</subject><subject>Obesity - economics</subject><subject>Obesity - epidemiology</subject><subject>Overweight - economics</subject><subject>Overweight - epidemiology</subject><subject>Residence Characteristics - statistics &amp; numerical data</subject><subject>Restaurants</subject><subject>spatial econometrics</subject><subject>Studies</subject><subject>Urban areas</subject><subject>Urban Population - statistics &amp; numerical data</subject><subject>Young Adult</subject><issn>1057-9230</issn><issn>1099-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNp1kV1LwzAUhoMoTqfgL5CAN9505qNJFu9kzE2YjoFO2E1I29Otc2tn0zL3783YnCB4dQLn4eU9TxC6oqRFCWF3M4hbrC35ETqjROuAEkGOt2-hAs04aaBz5-aE-B2Rp6jBmKZUK3WGxsMIXFZtsM0TnFpX4bQoEpzluC4jm-OlLT-gcvfY4hzW2K5WZWHjGa5dlk_xFIqghBRKyGNI8DKLywIntrIX6CS1CweX-9lEb4_d104_GAx7T52HQRALqnigfFsS0hQ4l5ZCyGgYgWUkkSwVaSgFi7kFoSVoJqJIa5soqRLKdMqjMGK8iW53ub7WZw2uMsvMxbBY2ByK2hnKpdBtLSnx6M0fdF7UZe7bbam2p6iiv4H-Euf8bWZVZl7CxlBitq6Nd222rj16vQ-soyUkB_BHrgeCHbDOFrD5N8j0u5194J7PXAVfB97_gJGKK2HeX3pmMJqMJ6PnieH8G013lS8</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Chen, Susan Elizabeth</creator><creator>Florax, Raymond J.</creator><creator>Snyder, Samantha D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7X8</scope></search><sort><creationdate>201307</creationdate><title>Obesity and fast food in urban markets: a new approach using geo-referenced micro data</title><author>Chen, Susan Elizabeth ; Florax, Raymond J. ; Snyder, Samantha D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5173-7109041fe336a1e4214bea20d62f5f4652c3ae596e925bb99ad767d129f3b4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Body mass index</topic><topic>Correlation analysis</topic><topic>Econometrics</topic><topic>Environment Design</topic><topic>fast food</topic><topic>Fast food industry</topic><topic>Fast Foods - statistics &amp; numerical data</topic><topic>Female</topic><topic>Food</topic><topic>Food Supply - economics</topic><topic>Food Supply - statistics &amp; numerical data</topic><topic>Health care policy</topic><topic>Health economics</topic><topic>Humans</topic><topic>Indiana - epidemiology</topic><topic>Least-Squares Analysis</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Econometric</topic><topic>Obesity</topic><topic>Obesity - economics</topic><topic>Obesity - epidemiology</topic><topic>Overweight - economics</topic><topic>Overweight - epidemiology</topic><topic>Residence Characteristics - statistics &amp; numerical data</topic><topic>Restaurants</topic><topic>spatial econometrics</topic><topic>Studies</topic><topic>Urban areas</topic><topic>Urban Population - statistics &amp; numerical data</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Susan Elizabeth</creatorcontrib><creatorcontrib>Florax, Raymond J.</creatorcontrib><creatorcontrib>Snyder, Samantha D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>MEDLINE - Academic</collection><jtitle>Health economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Susan Elizabeth</au><au>Florax, Raymond J.</au><au>Snyder, Samantha D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obesity and fast food in urban markets: a new approach using geo-referenced micro data</atitle><jtitle>Health economics</jtitle><addtitle>Health Econ</addtitle><date>2013-07</date><risdate>2013</risdate><volume>22</volume><issue>7</issue><spage>835</spage><epage>856</epage><pages>835-856</pages><issn>1057-9230</issn><eissn>1099-1050</eissn><abstract>ABSTRACT This paper presents a new method of assessing the relationship between features of the built environment and obesity, particularly in urban areas. Our empirical application combines georeferenced data on the location of fast‐food restaurants with data about personal health, behavioral, and neighborhood characteristics. We define a ‘local food environment’ for every individual utilizing buffers around a person's home address. Individual food landscapes are potentially endogenous because of spatial sorting of the population and food outlets, and the body mass index (BMI) values for individuals living close to each other are likely to be spatially correlated because of observed and unobserved individual and neighborhood effects. The potential biases associated with endogeneity and spatial correlation are handled using spatial econometric estimation techniques. Our application provides quantitative estimates of the effect of proximity to fast‐food restaurants on obesity in an urban food market. We also present estimates of a policy simulation that focuses on reducing the density of fast‐food restaurants in urban areas. In the simulations, we account for spatial heterogeneity in both the policy instruments and individual neighborhoods and find a small effect for the hypothesized relationships between individual BMI values and the density of fast‐food restaurants. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>22911977</pmid><doi>10.1002/hec.2863</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-9230
ispartof Health economics, 2013-07, Vol.22 (7), p.835-856
issn 1057-9230
1099-1050
language eng
recordid cdi_proquest_miscellaneous_1365989610
source MEDLINE; Wiley Journals; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Adult
Aged
Body mass index
Correlation analysis
Econometrics
Environment Design
fast food
Fast food industry
Fast Foods - statistics & numerical data
Female
Food
Food Supply - economics
Food Supply - statistics & numerical data
Health care policy
Health economics
Humans
Indiana - epidemiology
Least-Squares Analysis
Male
Middle Aged
Models, Econometric
Obesity
Obesity - economics
Obesity - epidemiology
Overweight - economics
Overweight - epidemiology
Residence Characteristics - statistics & numerical data
Restaurants
spatial econometrics
Studies
Urban areas
Urban Population - statistics & numerical data
Young Adult
title Obesity and fast food in urban markets: a new approach using geo-referenced micro data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obesity%20and%20fast%20food%20in%20urban%20markets:%20a%20new%20approach%20using%20geo-referenced%20micro%20data&rft.jtitle=Health%20economics&rft.au=Chen,%20Susan%20Elizabeth&rft.date=2013-07&rft.volume=22&rft.issue=7&rft.spage=835&rft.epage=856&rft.pages=835-856&rft.issn=1057-9230&rft.eissn=1099-1050&rft_id=info:doi/10.1002/hec.2863&rft_dat=%3Cproquest_cross%3E2998657221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1368989171&rft_id=info:pmid/22911977&rfr_iscdi=true