Obesity and fast food in urban markets: a new approach using geo-referenced micro data
ABSTRACT This paper presents a new method of assessing the relationship between features of the built environment and obesity, particularly in urban areas. Our empirical application combines georeferenced data on the location of fast‐food restaurants with data about personal health, behavioral, and...
Gespeichert in:
Veröffentlicht in: | Health economics 2013-07, Vol.22 (7), p.835-856 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 856 |
---|---|
container_issue | 7 |
container_start_page | 835 |
container_title | Health economics |
container_volume | 22 |
creator | Chen, Susan Elizabeth Florax, Raymond J. Snyder, Samantha D. |
description | ABSTRACT
This paper presents a new method of assessing the relationship between features of the built environment and obesity, particularly in urban areas. Our empirical application combines georeferenced data on the location of fast‐food restaurants with data about personal health, behavioral, and neighborhood characteristics. We define a ‘local food environment’ for every individual utilizing buffers around a person's home address. Individual food landscapes are potentially endogenous because of spatial sorting of the population and food outlets, and the body mass index (BMI) values for individuals living close to each other are likely to be spatially correlated because of observed and unobserved individual and neighborhood effects. The potential biases associated with endogeneity and spatial correlation are handled using spatial econometric estimation techniques. Our application provides quantitative estimates of the effect of proximity to fast‐food restaurants on obesity in an urban food market. We also present estimates of a policy simulation that focuses on reducing the density of fast‐food restaurants in urban areas. In the simulations, we account for spatial heterogeneity in both the policy instruments and individual neighborhoods and find a small effect for the hypothesized relationships between individual BMI values and the density of fast‐food restaurants. Copyright © 2012 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/hec.2863 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365989610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2998657221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5173-7109041fe336a1e4214bea20d62f5f4652c3ae596e925bb99ad767d129f3b4b23</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMoTqfgL5CAN9505qNJFu9kzE2YjoFO2E1I29Otc2tn0zL3783YnCB4dQLn4eU9TxC6oqRFCWF3M4hbrC35ETqjROuAEkGOt2-hAs04aaBz5-aE-B2Rp6jBmKZUK3WGxsMIXFZtsM0TnFpX4bQoEpzluC4jm-OlLT-gcvfY4hzW2K5WZWHjGa5dlk_xFIqghBRKyGNI8DKLywIntrIX6CS1CweX-9lEb4_d104_GAx7T52HQRALqnigfFsS0hQ4l5ZCyGgYgWUkkSwVaSgFi7kFoSVoJqJIa5soqRLKdMqjMGK8iW53ub7WZw2uMsvMxbBY2ByK2hnKpdBtLSnx6M0fdF7UZe7bbam2p6iiv4H-Euf8bWZVZl7CxlBitq6Nd222rj16vQ-soyUkB_BHrgeCHbDOFrD5N8j0u5194J7PXAVfB97_gJGKK2HeX3pmMJqMJ6PnieH8G013lS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1368989171</pqid></control><display><type>article</type><title>Obesity and fast food in urban markets: a new approach using geo-referenced micro data</title><source>MEDLINE</source><source>Wiley Journals</source><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><creator>Chen, Susan Elizabeth ; Florax, Raymond J. ; Snyder, Samantha D.</creator><creatorcontrib>Chen, Susan Elizabeth ; Florax, Raymond J. ; Snyder, Samantha D.</creatorcontrib><description>ABSTRACT
This paper presents a new method of assessing the relationship between features of the built environment and obesity, particularly in urban areas. Our empirical application combines georeferenced data on the location of fast‐food restaurants with data about personal health, behavioral, and neighborhood characteristics. We define a ‘local food environment’ for every individual utilizing buffers around a person's home address. Individual food landscapes are potentially endogenous because of spatial sorting of the population and food outlets, and the body mass index (BMI) values for individuals living close to each other are likely to be spatially correlated because of observed and unobserved individual and neighborhood effects. The potential biases associated with endogeneity and spatial correlation are handled using spatial econometric estimation techniques. Our application provides quantitative estimates of the effect of proximity to fast‐food restaurants on obesity in an urban food market. We also present estimates of a policy simulation that focuses on reducing the density of fast‐food restaurants in urban areas. In the simulations, we account for spatial heterogeneity in both the policy instruments and individual neighborhoods and find a small effect for the hypothesized relationships between individual BMI values and the density of fast‐food restaurants. Copyright © 2012 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1057-9230</identifier><identifier>EISSN: 1099-1050</identifier><identifier>DOI: 10.1002/hec.2863</identifier><identifier>PMID: 22911977</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adult ; Aged ; Body mass index ; Correlation analysis ; Econometrics ; Environment Design ; fast food ; Fast food industry ; Fast Foods - statistics & numerical data ; Female ; Food ; Food Supply - economics ; Food Supply - statistics & numerical data ; Health care policy ; Health economics ; Humans ; Indiana - epidemiology ; Least-Squares Analysis ; Male ; Middle Aged ; Models, Econometric ; Obesity ; Obesity - economics ; Obesity - epidemiology ; Overweight - economics ; Overweight - epidemiology ; Residence Characteristics - statistics & numerical data ; Restaurants ; spatial econometrics ; Studies ; Urban areas ; Urban Population - statistics & numerical data ; Young Adult</subject><ispartof>Health economics, 2013-07, Vol.22 (7), p.835-856</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Periodicals Inc. Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5173-7109041fe336a1e4214bea20d62f5f4652c3ae596e925bb99ad767d129f3b4b23</citedby><cites>FETCH-LOGICAL-c5173-7109041fe336a1e4214bea20d62f5f4652c3ae596e925bb99ad767d129f3b4b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhec.2863$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhec.2863$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,30999,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22911977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Susan Elizabeth</creatorcontrib><creatorcontrib>Florax, Raymond J.</creatorcontrib><creatorcontrib>Snyder, Samantha D.</creatorcontrib><title>Obesity and fast food in urban markets: a new approach using geo-referenced micro data</title><title>Health economics</title><addtitle>Health Econ</addtitle><description>ABSTRACT
This paper presents a new method of assessing the relationship between features of the built environment and obesity, particularly in urban areas. Our empirical application combines georeferenced data on the location of fast‐food restaurants with data about personal health, behavioral, and neighborhood characteristics. We define a ‘local food environment’ for every individual utilizing buffers around a person's home address. Individual food landscapes are potentially endogenous because of spatial sorting of the population and food outlets, and the body mass index (BMI) values for individuals living close to each other are likely to be spatially correlated because of observed and unobserved individual and neighborhood effects. The potential biases associated with endogeneity and spatial correlation are handled using spatial econometric estimation techniques. Our application provides quantitative estimates of the effect of proximity to fast‐food restaurants on obesity in an urban food market. We also present estimates of a policy simulation that focuses on reducing the density of fast‐food restaurants in urban areas. In the simulations, we account for spatial heterogeneity in both the policy instruments and individual neighborhoods and find a small effect for the hypothesized relationships between individual BMI values and the density of fast‐food restaurants. Copyright © 2012 John Wiley & Sons, Ltd.</description><subject>Adult</subject><subject>Aged</subject><subject>Body mass index</subject><subject>Correlation analysis</subject><subject>Econometrics</subject><subject>Environment Design</subject><subject>fast food</subject><subject>Fast food industry</subject><subject>Fast Foods - statistics & numerical data</subject><subject>Female</subject><subject>Food</subject><subject>Food Supply - economics</subject><subject>Food Supply - statistics & numerical data</subject><subject>Health care policy</subject><subject>Health economics</subject><subject>Humans</subject><subject>Indiana - epidemiology</subject><subject>Least-Squares Analysis</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Econometric</subject><subject>Obesity</subject><subject>Obesity - economics</subject><subject>Obesity - epidemiology</subject><subject>Overweight - economics</subject><subject>Overweight - epidemiology</subject><subject>Residence Characteristics - statistics & numerical data</subject><subject>Restaurants</subject><subject>spatial econometrics</subject><subject>Studies</subject><subject>Urban areas</subject><subject>Urban Population - statistics & numerical data</subject><subject>Young Adult</subject><issn>1057-9230</issn><issn>1099-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNp1kV1LwzAUhoMoTqfgL5CAN9505qNJFu9kzE2YjoFO2E1I29Otc2tn0zL3783YnCB4dQLn4eU9TxC6oqRFCWF3M4hbrC35ETqjROuAEkGOt2-hAs04aaBz5-aE-B2Rp6jBmKZUK3WGxsMIXFZtsM0TnFpX4bQoEpzluC4jm-OlLT-gcvfY4hzW2K5WZWHjGa5dlk_xFIqghBRKyGNI8DKLywIntrIX6CS1CweX-9lEb4_d104_GAx7T52HQRALqnigfFsS0hQ4l5ZCyGgYgWUkkSwVaSgFi7kFoSVoJqJIa5soqRLKdMqjMGK8iW53ub7WZw2uMsvMxbBY2ByK2hnKpdBtLSnx6M0fdF7UZe7bbam2p6iiv4H-Euf8bWZVZl7CxlBitq6Nd222rj16vQ-soyUkB_BHrgeCHbDOFrD5N8j0u5194J7PXAVfB97_gJGKK2HeX3pmMJqMJ6PnieH8G013lS8</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Chen, Susan Elizabeth</creator><creator>Florax, Raymond J.</creator><creator>Snyder, Samantha D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7X8</scope></search><sort><creationdate>201307</creationdate><title>Obesity and fast food in urban markets: a new approach using geo-referenced micro data</title><author>Chen, Susan Elizabeth ; Florax, Raymond J. ; Snyder, Samantha D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5173-7109041fe336a1e4214bea20d62f5f4652c3ae596e925bb99ad767d129f3b4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Body mass index</topic><topic>Correlation analysis</topic><topic>Econometrics</topic><topic>Environment Design</topic><topic>fast food</topic><topic>Fast food industry</topic><topic>Fast Foods - statistics & numerical data</topic><topic>Female</topic><topic>Food</topic><topic>Food Supply - economics</topic><topic>Food Supply - statistics & numerical data</topic><topic>Health care policy</topic><topic>Health economics</topic><topic>Humans</topic><topic>Indiana - epidemiology</topic><topic>Least-Squares Analysis</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Econometric</topic><topic>Obesity</topic><topic>Obesity - economics</topic><topic>Obesity - epidemiology</topic><topic>Overweight - economics</topic><topic>Overweight - epidemiology</topic><topic>Residence Characteristics - statistics & numerical data</topic><topic>Restaurants</topic><topic>spatial econometrics</topic><topic>Studies</topic><topic>Urban areas</topic><topic>Urban Population - statistics & numerical data</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Susan Elizabeth</creatorcontrib><creatorcontrib>Florax, Raymond J.</creatorcontrib><creatorcontrib>Snyder, Samantha D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>MEDLINE - Academic</collection><jtitle>Health economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Susan Elizabeth</au><au>Florax, Raymond J.</au><au>Snyder, Samantha D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obesity and fast food in urban markets: a new approach using geo-referenced micro data</atitle><jtitle>Health economics</jtitle><addtitle>Health Econ</addtitle><date>2013-07</date><risdate>2013</risdate><volume>22</volume><issue>7</issue><spage>835</spage><epage>856</epage><pages>835-856</pages><issn>1057-9230</issn><eissn>1099-1050</eissn><abstract>ABSTRACT
This paper presents a new method of assessing the relationship between features of the built environment and obesity, particularly in urban areas. Our empirical application combines georeferenced data on the location of fast‐food restaurants with data about personal health, behavioral, and neighborhood characteristics. We define a ‘local food environment’ for every individual utilizing buffers around a person's home address. Individual food landscapes are potentially endogenous because of spatial sorting of the population and food outlets, and the body mass index (BMI) values for individuals living close to each other are likely to be spatially correlated because of observed and unobserved individual and neighborhood effects. The potential biases associated with endogeneity and spatial correlation are handled using spatial econometric estimation techniques. Our application provides quantitative estimates of the effect of proximity to fast‐food restaurants on obesity in an urban food market. We also present estimates of a policy simulation that focuses on reducing the density of fast‐food restaurants in urban areas. In the simulations, we account for spatial heterogeneity in both the policy instruments and individual neighborhoods and find a small effect for the hypothesized relationships between individual BMI values and the density of fast‐food restaurants. Copyright © 2012 John Wiley & Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>22911977</pmid><doi>10.1002/hec.2863</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-9230 |
ispartof | Health economics, 2013-07, Vol.22 (7), p.835-856 |
issn | 1057-9230 1099-1050 |
language | eng |
recordid | cdi_proquest_miscellaneous_1365989610 |
source | MEDLINE; Wiley Journals; Applied Social Sciences Index & Abstracts (ASSIA) |
subjects | Adult Aged Body mass index Correlation analysis Econometrics Environment Design fast food Fast food industry Fast Foods - statistics & numerical data Female Food Food Supply - economics Food Supply - statistics & numerical data Health care policy Health economics Humans Indiana - epidemiology Least-Squares Analysis Male Middle Aged Models, Econometric Obesity Obesity - economics Obesity - epidemiology Overweight - economics Overweight - epidemiology Residence Characteristics - statistics & numerical data Restaurants spatial econometrics Studies Urban areas Urban Population - statistics & numerical data Young Adult |
title | Obesity and fast food in urban markets: a new approach using geo-referenced micro data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obesity%20and%20fast%20food%20in%20urban%20markets:%20a%20new%20approach%20using%20geo-referenced%20micro%20data&rft.jtitle=Health%20economics&rft.au=Chen,%20Susan%20Elizabeth&rft.date=2013-07&rft.volume=22&rft.issue=7&rft.spage=835&rft.epage=856&rft.pages=835-856&rft.issn=1057-9230&rft.eissn=1099-1050&rft_id=info:doi/10.1002/hec.2863&rft_dat=%3Cproquest_cross%3E2998657221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1368989171&rft_id=info:pmid/22911977&rfr_iscdi=true |